tinygo/compiler/compiler.go
2018-10-07 13:19:38 +02:00

3233 строки
110 КиБ
Go

package compiler
import (
"errors"
"fmt"
"go/build"
"go/constant"
"go/token"
"go/types"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"github.com/aykevl/go-llvm"
"github.com/aykevl/tinygo/ir"
"go/parser"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/ssa"
)
func init() {
llvm.InitializeAllTargets()
llvm.InitializeAllTargetMCs()
llvm.InitializeAllTargetInfos()
llvm.InitializeAllAsmParsers()
llvm.InitializeAllAsmPrinters()
}
// Configure the compiler.
type Config struct {
Triple string // LLVM target triple, e.g. x86_64-unknown-linux-gnu (empty string means default)
DumpSSA bool // dump Go SSA, for compiler debugging
Debug bool // add debug symbols for gdb
RootDir string // GOROOT for TinyGo
GOPATH string // GOPATH, like `go env GOPATH`
BuildTags []string // build tags for TinyGo (empty means {runtime.GOOS/runtime.GOARCH})
}
type Compiler struct {
Config
mod llvm.Module
ctx llvm.Context
builder llvm.Builder
dibuilder *llvm.DIBuilder
cu llvm.Metadata
difiles map[string]llvm.Metadata
ditypes map[string]llvm.Metadata
machine llvm.TargetMachine
targetData llvm.TargetData
intType llvm.Type
i8ptrType llvm.Type // for convenience
uintptrType llvm.Type
lenType llvm.Type
coroIdFunc llvm.Value
coroSizeFunc llvm.Value
coroBeginFunc llvm.Value
coroSuspendFunc llvm.Value
coroEndFunc llvm.Value
coroFreeFunc llvm.Value
initFuncs []llvm.Value
deferFuncs []*ir.Function
ir *ir.Program
}
type Frame struct {
fn *ir.Function
locals map[ssa.Value]llvm.Value // local variables
blocks map[*ssa.BasicBlock]llvm.BasicBlock
currentBlock *ssa.BasicBlock
phis []Phi
blocking bool
taskHandle llvm.Value
cleanupBlock llvm.BasicBlock
suspendBlock llvm.BasicBlock
deferPtr llvm.Value
difunc llvm.Metadata
}
type Phi struct {
ssa *ssa.Phi
llvm llvm.Value
}
func NewCompiler(pkgName string, config Config) (*Compiler, error) {
if config.Triple == "" {
config.Triple = llvm.DefaultTargetTriple()
}
if len(config.BuildTags) == 0 {
config.BuildTags = []string{runtime.GOOS, runtime.GOARCH}
}
c := &Compiler{
Config: config,
difiles: make(map[string]llvm.Metadata),
ditypes: make(map[string]llvm.Metadata),
}
target, err := llvm.GetTargetFromTriple(config.Triple)
if err != nil {
return nil, err
}
c.machine = target.CreateTargetMachine(config.Triple, "", "", llvm.CodeGenLevelDefault, llvm.RelocStatic, llvm.CodeModelDefault)
c.targetData = c.machine.CreateTargetData()
c.mod = llvm.NewModule(pkgName)
c.mod.SetTarget(config.Triple)
c.mod.SetDataLayout(c.targetData.String())
c.ctx = c.mod.Context()
c.builder = c.ctx.NewBuilder()
c.dibuilder = llvm.NewDIBuilder(c.mod)
// Depends on platform (32bit or 64bit), but fix it here for now.
c.intType = llvm.Int32Type()
c.uintptrType = c.targetData.IntPtrType()
if c.targetData.PointerSize() < 4 {
// 16 or 8 bits target with smaller length type
c.lenType = c.uintptrType
} else {
c.lenType = llvm.Int32Type() // also defined as runtime.lenType
}
c.i8ptrType = llvm.PointerType(llvm.Int8Type(), 0)
coroIdType := llvm.FunctionType(c.ctx.TokenType(), []llvm.Type{llvm.Int32Type(), c.i8ptrType, c.i8ptrType, c.i8ptrType}, false)
c.coroIdFunc = llvm.AddFunction(c.mod, "llvm.coro.id", coroIdType)
coroSizeType := llvm.FunctionType(llvm.Int32Type(), nil, false)
c.coroSizeFunc = llvm.AddFunction(c.mod, "llvm.coro.size.i32", coroSizeType)
coroBeginType := llvm.FunctionType(c.i8ptrType, []llvm.Type{c.ctx.TokenType(), c.i8ptrType}, false)
c.coroBeginFunc = llvm.AddFunction(c.mod, "llvm.coro.begin", coroBeginType)
coroSuspendType := llvm.FunctionType(llvm.Int8Type(), []llvm.Type{c.ctx.TokenType(), llvm.Int1Type()}, false)
c.coroSuspendFunc = llvm.AddFunction(c.mod, "llvm.coro.suspend", coroSuspendType)
coroEndType := llvm.FunctionType(llvm.Int1Type(), []llvm.Type{c.i8ptrType, llvm.Int1Type()}, false)
c.coroEndFunc = llvm.AddFunction(c.mod, "llvm.coro.end", coroEndType)
coroFreeType := llvm.FunctionType(c.i8ptrType, []llvm.Type{c.ctx.TokenType(), c.i8ptrType}, false)
c.coroFreeFunc = llvm.AddFunction(c.mod, "llvm.coro.free", coroFreeType)
return c, nil
}
// Return the LLVM module. Only valid after a successful compile.
func (c *Compiler) Module() llvm.Module {
return c.mod
}
// Compile the given package path or .go file path. Return an error when this
// fails (in any stage).
func (c *Compiler) Compile(mainPath string) error {
tripleSplit := strings.Split(c.Triple, "-")
// Prefix the GOPATH with the system GOROOT, as GOROOT is already set to
// the TinyGo root.
gopath := c.GOPATH
if gopath == "" {
gopath = runtime.GOROOT()
} else {
gopath = runtime.GOROOT() + string(filepath.ListSeparator) + gopath
}
config := loader.Config{
TypeChecker: types.Config{
Sizes: &StdSizes{
IntSize: int64(c.targetData.TypeAllocSize(c.intType)),
PtrSize: int64(c.targetData.PointerSize()),
MaxAlign: int64(c.targetData.PrefTypeAlignment(c.i8ptrType)),
},
},
Build: &build.Context{
GOARCH: tripleSplit[0],
GOOS: tripleSplit[2],
GOROOT: c.RootDir,
GOPATH: gopath,
CgoEnabled: true,
UseAllFiles: false,
Compiler: "gc", // must be one of the recognized compilers
BuildTags: append([]string{"tgo"}, c.BuildTags...),
},
ParserMode: parser.ParseComments,
}
config.Import("runtime")
if strings.HasSuffix(mainPath, ".go") {
config.CreateFromFilenames("main", mainPath)
} else {
config.Import(mainPath)
}
lprogram, err := config.Load()
if err != nil {
return err
}
c.ir = ir.NewProgram(lprogram, mainPath)
// Run some DCE and analysis passes. The results are later used by the
// compiler.
c.ir.SimpleDCE() // remove most dead code
c.ir.AnalyseCallgraph() // set up callgraph
c.ir.AnalyseInterfaceConversions() // determine which types are converted to an interface
c.ir.AnalyseFunctionPointers() // determine which function pointer signatures need context
c.ir.AnalyseBlockingRecursive() // make all parents of blocking calls blocking (transitively)
c.ir.AnalyseGoCalls() // check whether we need a scheduler
// Initialize debug information.
c.cu = c.dibuilder.CreateCompileUnit(llvm.DICompileUnit{
Language: llvm.DW_LANG_Go,
File: mainPath,
Dir: "",
Producer: "TinyGo",
Optimized: true,
})
var frames []*Frame
// Declare all named struct types.
for _, t := range c.ir.NamedTypes {
if named, ok := t.Type.Type().(*types.Named); ok {
if _, ok := named.Underlying().(*types.Struct); ok {
t.LLVMType = c.ctx.StructCreateNamed(named.Obj().Pkg().Path() + "." + named.Obj().Name())
}
}
}
// Define all named struct types.
for _, t := range c.ir.NamedTypes {
if named, ok := t.Type.Type().(*types.Named); ok {
if st, ok := named.Underlying().(*types.Struct); ok {
llvmType, err := c.getLLVMType(st)
if err != nil {
return err
}
t.LLVMType.StructSetBody(llvmType.StructElementTypes(), false)
}
}
}
// Declare all globals. These will get an initializer when parsing "package
// initializer" functions.
for _, g := range c.ir.Globals {
typ := g.Type().(*types.Pointer).Elem()
llvmType, err := c.getLLVMType(typ)
if err != nil {
return err
}
global := c.mod.NamedGlobal(g.LinkName())
if global.IsNil() {
global = llvm.AddGlobal(c.mod, llvmType, g.LinkName())
}
g.LLVMGlobal = global
if !g.IsExtern() {
global.SetLinkage(llvm.InternalLinkage)
initializer, err := getZeroValue(llvmType)
if err != nil {
return err
}
global.SetInitializer(initializer)
}
}
// Declare all functions.
for _, f := range c.ir.Functions {
frame, err := c.parseFuncDecl(f)
if err != nil {
return err
}
frames = append(frames, frame)
}
// Find and interpret package initializers.
for _, frame := range frames {
if frame.fn.Synthetic == "package initializer" {
c.initFuncs = append(c.initFuncs, frame.fn.LLVMFn)
if len(frame.fn.Blocks) != 1 {
panic("unexpected number of basic blocks in package initializer")
}
// Try to interpret as much as possible of the init() function.
// Whenever it hits an instruction that it doesn't understand, it
// bails out and leaves the rest to the compiler (so initialization
// continues at runtime).
// This should only happen when it hits a function call or the end
// of the block, ideally.
err := c.ir.Interpret(frame.fn.Blocks[0], c.DumpSSA)
if err != nil {
return err
}
err = c.parseFunc(frame)
if err != nil {
return err
}
}
}
// Set values for globals (after package initializer has been interpreted).
for _, g := range c.ir.Globals {
if g.Initializer() == nil {
continue
}
err := c.parseGlobalInitializer(g)
if err != nil {
return err
}
}
// Add definitions to declarations.
for _, frame := range frames {
if frame.fn.CName() != "" {
continue
}
if frame.fn.Blocks == nil {
continue // external function
}
var err error
if frame.fn.Synthetic == "package initializer" {
continue // already done
} else {
err = c.parseFunc(frame)
}
if err != nil {
return err
}
}
// Create deferred function wrappers.
for _, fn := range c.deferFuncs {
// This function gets a single parameter which is a pointer to a struct.
// This struct starts with the values of runtime._defer, but after that
// follow the real parameters.
// The job of this wrapper is to extract these parameters and to call
// the real function with them.
llvmFn := c.mod.NamedFunction(fn.LinkName() + "$defer")
entry := c.ctx.AddBasicBlock(llvmFn, "entry")
c.builder.SetInsertPointAtEnd(entry)
deferRawPtr := llvmFn.Param(0)
// Get the real param type and cast to it.
valueTypes := []llvm.Type{llvmFn.Type(), llvm.PointerType(c.mod.GetTypeByName("runtime._defer"), 0)}
for _, param := range fn.Params {
llvmType, err := c.getLLVMType(param.Type())
if err != nil {
return err
}
valueTypes = append(valueTypes, llvmType)
}
contextType := llvm.StructType(valueTypes, false)
contextPtr := c.builder.CreateBitCast(deferRawPtr, llvm.PointerType(contextType, 0), "context")
// Extract the params from the struct.
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
for i := range fn.Params {
gep := c.builder.CreateGEP(contextPtr, []llvm.Value{zero, llvm.ConstInt(llvm.Int32Type(), uint64(i+2), false)}, "gep")
forwardParam := c.builder.CreateLoad(gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
// Call real function (of which this is a wrapper).
c.createCall(fn.LLVMFn, forwardParams, "")
c.builder.CreateRetVoid()
}
// After all packages are imported, add a synthetic initializer function
// that calls the initializer of each package.
initFn := c.ir.GetFunction(c.ir.Program.ImportedPackage("runtime").Members["initAll"].(*ssa.Function))
initFn.LLVMFn.SetLinkage(llvm.InternalLinkage)
difunc, err := c.attachDebugInfo(initFn)
if err != nil {
return err
}
pos := c.ir.Program.Fset.Position(initFn.Pos())
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
block := c.ctx.AddBasicBlock(initFn.LLVMFn, "entry")
c.builder.SetInsertPointAtEnd(block)
for _, fn := range c.initFuncs {
c.builder.CreateCall(fn, nil, "")
}
c.builder.CreateRetVoid()
mainWrapper := c.mod.NamedFunction("runtime.mainWrapper")
block = c.ctx.AddBasicBlock(mainWrapper, "entry")
c.builder.SetInsertPointAtEnd(block)
realMain := c.mod.NamedFunction(c.ir.MainPkg().Pkg.Path() + ".main")
if c.ir.NeedsScheduler() {
coroutine := c.builder.CreateCall(realMain, []llvm.Value{llvm.ConstPointerNull(c.i8ptrType)}, "")
scheduler := c.mod.NamedFunction("runtime.scheduler")
c.builder.CreateCall(scheduler, []llvm.Value{coroutine}, "")
} else {
c.builder.CreateCall(realMain, nil, "")
}
c.builder.CreateRetVoid()
// Initialize runtime type information, for interfaces.
// See src/runtime/interface.go for more details.
dynamicTypes := c.ir.AllDynamicTypes()
numDynamicTypes := 0
for _, meta := range dynamicTypes {
numDynamicTypes += len(meta.Methods)
}
ranges := make([]llvm.Value, 0, len(dynamicTypes))
funcPointers := make([]llvm.Value, 0, numDynamicTypes)
signatures := make([]llvm.Value, 0, numDynamicTypes)
startIndex := 0
rangeType := c.mod.GetTypeByName("runtime.methodSetRange")
for _, meta := range dynamicTypes {
rangeValues := []llvm.Value{
llvm.ConstInt(llvm.Int16Type(), uint64(startIndex), false),
llvm.ConstInt(llvm.Int16Type(), uint64(len(meta.Methods)), false),
}
rangeValue := llvm.ConstNamedStruct(rangeType, rangeValues)
ranges = append(ranges, rangeValue)
methods := make([]*types.Selection, 0, len(meta.Methods))
for _, method := range meta.Methods {
methods = append(methods, method)
}
c.ir.SortMethods(methods)
for _, method := range methods {
f := c.ir.GetFunction(c.ir.Program.MethodValue(method))
if f.LLVMFn.IsNil() {
return errors.New("cannot find function: " + f.LinkName())
}
fn, err := c.wrapInterfaceInvoke(f)
if err != nil {
return err
}
fnPtr := llvm.ConstBitCast(fn, c.i8ptrType)
funcPointers = append(funcPointers, fnPtr)
signatureNum := c.ir.MethodNum(method.Obj().(*types.Func))
signature := llvm.ConstInt(llvm.Int16Type(), uint64(signatureNum), false)
signatures = append(signatures, signature)
}
startIndex += len(meta.Methods)
}
interfaceTypes := c.ir.AllInterfaces()
interfaceIndex := make([]llvm.Value, len(interfaceTypes))
interfaceLengths := make([]llvm.Value, len(interfaceTypes))
interfaceMethods := make([]llvm.Value, 0)
for i, itfType := range interfaceTypes {
if itfType.Type.NumMethods() > 0xff {
return errors.New("too many methods for interface " + itfType.Type.String())
}
interfaceIndex[i] = llvm.ConstInt(llvm.Int16Type(), uint64(i), false)
interfaceLengths[i] = llvm.ConstInt(llvm.Int8Type(), uint64(itfType.Type.NumMethods()), false)
funcs := make([]*types.Func, itfType.Type.NumMethods())
for i := range funcs {
funcs[i] = itfType.Type.Method(i)
}
c.ir.SortFuncs(funcs)
for _, f := range funcs {
id := llvm.ConstInt(llvm.Int16Type(), uint64(c.ir.MethodNum(f)), false)
interfaceMethods = append(interfaceMethods, id)
}
}
if len(ranges) >= 1<<16 {
return errors.New("method call numbers do not fit in a 16-bit integer")
}
// Replace the pre-created arrays with the generated arrays.
rangeArray := llvm.ConstArray(rangeType, ranges)
rangeArrayNewGlobal := llvm.AddGlobal(c.mod, rangeArray.Type(), "runtime.methodSetRanges.tmp")
rangeArrayNewGlobal.SetInitializer(rangeArray)
rangeArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
rangeArrayOldGlobal := c.mod.NamedGlobal("runtime.methodSetRanges")
rangeArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(rangeArrayNewGlobal, rangeArrayOldGlobal.Type()))
rangeArrayOldGlobal.EraseFromParentAsGlobal()
rangeArrayNewGlobal.SetName("runtime.methodSetRanges")
funcArray := llvm.ConstArray(c.i8ptrType, funcPointers)
funcArrayNewGlobal := llvm.AddGlobal(c.mod, funcArray.Type(), "runtime.methodSetFunctions.tmp")
funcArrayNewGlobal.SetInitializer(funcArray)
funcArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
funcArrayOldGlobal := c.mod.NamedGlobal("runtime.methodSetFunctions")
funcArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(funcArrayNewGlobal, funcArrayOldGlobal.Type()))
funcArrayOldGlobal.EraseFromParentAsGlobal()
funcArrayNewGlobal.SetName("runtime.methodSetFunctions")
signatureArray := llvm.ConstArray(llvm.Int16Type(), signatures)
signatureArrayNewGlobal := llvm.AddGlobal(c.mod, signatureArray.Type(), "runtime.methodSetSignatures.tmp")
signatureArrayNewGlobal.SetInitializer(signatureArray)
signatureArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
signatureArrayOldGlobal := c.mod.NamedGlobal("runtime.methodSetSignatures")
signatureArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(signatureArrayNewGlobal, signatureArrayOldGlobal.Type()))
signatureArrayOldGlobal.EraseFromParentAsGlobal()
signatureArrayNewGlobal.SetName("runtime.methodSetSignatures")
interfaceIndexArray := llvm.ConstArray(llvm.Int16Type(), interfaceIndex)
interfaceIndexArrayNewGlobal := llvm.AddGlobal(c.mod, interfaceIndexArray.Type(), "runtime.interfaceIndex.tmp")
interfaceIndexArrayNewGlobal.SetInitializer(interfaceIndexArray)
interfaceIndexArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
interfaceIndexArrayOldGlobal := c.mod.NamedGlobal("runtime.interfaceIndex")
interfaceIndexArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(interfaceIndexArrayNewGlobal, interfaceIndexArrayOldGlobal.Type()))
interfaceIndexArrayOldGlobal.EraseFromParentAsGlobal()
interfaceIndexArrayNewGlobal.SetName("runtime.interfaceIndex")
interfaceLengthsArray := llvm.ConstArray(llvm.Int8Type(), interfaceLengths)
interfaceLengthsArrayNewGlobal := llvm.AddGlobal(c.mod, interfaceLengthsArray.Type(), "runtime.interfaceLengths.tmp")
interfaceLengthsArrayNewGlobal.SetInitializer(interfaceLengthsArray)
interfaceLengthsArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
interfaceLengthsArrayOldGlobal := c.mod.NamedGlobal("runtime.interfaceLengths")
interfaceLengthsArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(interfaceLengthsArrayNewGlobal, interfaceLengthsArrayOldGlobal.Type()))
interfaceLengthsArrayOldGlobal.EraseFromParentAsGlobal()
interfaceLengthsArrayNewGlobal.SetName("runtime.interfaceLengths")
interfaceMethodsArray := llvm.ConstArray(llvm.Int16Type(), interfaceMethods)
interfaceMethodsArrayNewGlobal := llvm.AddGlobal(c.mod, interfaceMethodsArray.Type(), "runtime.interfaceMethods.tmp")
interfaceMethodsArrayNewGlobal.SetInitializer(interfaceMethodsArray)
interfaceMethodsArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
interfaceMethodsArrayOldGlobal := c.mod.NamedGlobal("runtime.interfaceMethods")
interfaceMethodsArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(interfaceMethodsArrayNewGlobal, interfaceMethodsArrayOldGlobal.Type()))
interfaceMethodsArrayOldGlobal.EraseFromParentAsGlobal()
interfaceMethodsArrayNewGlobal.SetName("runtime.interfaceMethods")
c.mod.NamedGlobal("runtime.firstTypeWithMethods").SetInitializer(llvm.ConstInt(llvm.Int16Type(), uint64(c.ir.FirstDynamicType()), false))
// see: https://reviews.llvm.org/D18355
c.mod.AddNamedMetadataOperand("llvm.module.flags",
c.ctx.MDNode([]llvm.Metadata{
llvm.ConstInt(llvm.Int32Type(), 1, false).ConstantAsMetadata(), // Error on mismatch
llvm.GlobalContext().MDString("Debug Info Version"),
llvm.ConstInt(llvm.Int32Type(), 3, false).ConstantAsMetadata(), // DWARF version
}),
)
c.dibuilder.Finalize()
return nil
}
func (c *Compiler) getLLVMType(goType types.Type) (llvm.Type, error) {
switch typ := goType.(type) {
case *types.Array:
elemType, err := c.getLLVMType(typ.Elem())
if err != nil {
return llvm.Type{}, err
}
return llvm.ArrayType(elemType, int(typ.Len())), nil
case *types.Basic:
switch typ.Kind() {
case types.Bool, types.UntypedBool:
return llvm.Int1Type(), nil
case types.Int8, types.Uint8:
return llvm.Int8Type(), nil
case types.Int16, types.Uint16:
return llvm.Int16Type(), nil
case types.Int32, types.Uint32:
return llvm.Int32Type(), nil
case types.Int, types.Uint:
return c.intType, nil
case types.Int64, types.Uint64:
return llvm.Int64Type(), nil
case types.Float32:
return llvm.FloatType(), nil
case types.Float64:
return llvm.DoubleType(), nil
case types.Complex64:
return llvm.VectorType(llvm.FloatType(), 2), nil
case types.Complex128:
return llvm.VectorType(llvm.DoubleType(), 2), nil
case types.String, types.UntypedString:
return c.mod.GetTypeByName("runtime._string"), nil
case types.Uintptr:
return c.uintptrType, nil
case types.UnsafePointer:
return c.i8ptrType, nil
default:
return llvm.Type{}, errors.New("todo: unknown basic type: " + typ.String())
}
case *types.Chan:
return llvm.PointerType(c.mod.GetTypeByName("runtime.channel"), 0), nil
case *types.Interface:
return c.mod.GetTypeByName("runtime._interface"), nil
case *types.Map:
return llvm.PointerType(c.mod.GetTypeByName("runtime.hashmap"), 0), nil
case *types.Named:
if _, ok := typ.Underlying().(*types.Struct); ok {
llvmType := c.mod.GetTypeByName(typ.Obj().Pkg().Path() + "." + typ.Obj().Name())
if llvmType.IsNil() {
return llvm.Type{}, errors.New("type not found: " + typ.Obj().Pkg().Path() + "." + typ.Obj().Name())
}
return llvmType, nil
}
return c.getLLVMType(typ.Underlying())
case *types.Pointer:
ptrTo, err := c.getLLVMType(typ.Elem())
if err != nil {
return llvm.Type{}, err
}
return llvm.PointerType(ptrTo, 0), nil
case *types.Signature: // function pointer
// return value
var err error
var returnType llvm.Type
if typ.Results().Len() == 0 {
returnType = llvm.VoidType()
} else if typ.Results().Len() == 1 {
returnType, err = c.getLLVMType(typ.Results().At(0).Type())
if err != nil {
return llvm.Type{}, err
}
} else {
// Multiple return values. Put them together in a struct.
members := make([]llvm.Type, typ.Results().Len())
for i := 0; i < typ.Results().Len(); i++ {
returnType, err := c.getLLVMType(typ.Results().At(i).Type())
if err != nil {
return llvm.Type{}, err
}
members[i] = returnType
}
returnType = llvm.StructType(members, false)
}
// param values
var paramTypes []llvm.Type
if typ.Recv() != nil {
recv, err := c.getLLVMType(typ.Recv().Type())
if err != nil {
return llvm.Type{}, err
}
if recv.StructName() == "runtime._interface" {
recv = c.i8ptrType
}
paramTypes = append(paramTypes, c.expandFormalParamType(recv)...)
}
params := typ.Params()
for i := 0; i < params.Len(); i++ {
subType, err := c.getLLVMType(params.At(i).Type())
if err != nil {
return llvm.Type{}, err
}
paramTypes = append(paramTypes, c.expandFormalParamType(subType)...)
}
var ptr llvm.Type
if c.ir.SignatureNeedsContext(typ) {
// make a closure type (with a function pointer type inside):
// {context, funcptr}
paramTypes = append(paramTypes, c.i8ptrType)
ptr = llvm.PointerType(llvm.FunctionType(returnType, paramTypes, false), 0)
ptr = c.ctx.StructType([]llvm.Type{c.i8ptrType, ptr}, false)
} else {
// make a simple function pointer
ptr = llvm.PointerType(llvm.FunctionType(returnType, paramTypes, false), 0)
}
return ptr, nil
case *types.Slice:
elemType, err := c.getLLVMType(typ.Elem())
if err != nil {
return llvm.Type{}, err
}
members := []llvm.Type{
llvm.PointerType(elemType, 0),
c.lenType, // len
c.lenType, // cap
}
return llvm.StructType(members, false), nil
case *types.Struct:
members := make([]llvm.Type, typ.NumFields())
for i := 0; i < typ.NumFields(); i++ {
member, err := c.getLLVMType(typ.Field(i).Type())
if err != nil {
return llvm.Type{}, err
}
members[i] = member
}
return llvm.StructType(members, false), nil
default:
return llvm.Type{}, errors.New("todo: unknown type: " + goType.String())
}
}
// Return a zero LLVM value for any LLVM type. Setting this value as an
// initializer has the same effect as setting 'zeroinitializer' on a value.
// Sadly, I haven't found a way to do it directly with the Go API but this works
// just fine.
func getZeroValue(typ llvm.Type) (llvm.Value, error) {
switch typ.TypeKind() {
case llvm.ArrayTypeKind:
subTyp := typ.ElementType()
vals := make([]llvm.Value, typ.ArrayLength())
for i := range vals {
val, err := getZeroValue(subTyp)
if err != nil {
return llvm.Value{}, err
}
vals[i] = val
}
return llvm.ConstArray(subTyp, vals), nil
case llvm.FloatTypeKind, llvm.DoubleTypeKind:
return llvm.ConstFloat(typ, 0.0), nil
case llvm.IntegerTypeKind:
return llvm.ConstInt(typ, 0, false), nil
case llvm.PointerTypeKind:
return llvm.ConstPointerNull(typ), nil
case llvm.StructTypeKind:
types := typ.StructElementTypes()
vals := make([]llvm.Value, len(types))
for i, subTyp := range types {
val, err := getZeroValue(subTyp)
if err != nil {
return llvm.Value{}, err
}
vals[i] = val
}
if typ.StructName() != "" {
return llvm.ConstNamedStruct(typ, vals), nil
} else {
return llvm.ConstStruct(vals, false), nil
}
default:
return llvm.Value{}, errors.New("todo: LLVM zero initializer")
}
}
// Is this a pointer type of some sort? Can be unsafe.Pointer or any *T pointer.
func isPointer(typ types.Type) bool {
if _, ok := typ.(*types.Pointer); ok {
return true
} else if typ, ok := typ.(*types.Basic); ok && typ.Kind() == types.UnsafePointer {
return true
} else {
return false
}
}
// Get the DWARF type for this Go type.
func (c *Compiler) getDIType(typ types.Type) (llvm.Metadata, error) {
name := typ.String()
if dityp, ok := c.ditypes[name]; ok {
return dityp, nil
} else {
llvmType, err := c.getLLVMType(typ)
if err != nil {
return llvm.Metadata{}, err
}
sizeInBytes := c.targetData.TypeAllocSize(llvmType)
var encoding llvm.DwarfTypeEncoding
switch typ := typ.(type) {
case *types.Basic:
if typ.Info()&types.IsBoolean != 0 {
encoding = llvm.DW_ATE_boolean
} else if typ.Info()&types.IsFloat != 0 {
encoding = llvm.DW_ATE_float
} else if typ.Info()&types.IsComplex != 0 {
encoding = llvm.DW_ATE_complex_float
} else if typ.Info()&types.IsUnsigned != 0 {
encoding = llvm.DW_ATE_unsigned
} else if typ.Info()&types.IsInteger != 0 {
encoding = llvm.DW_ATE_signed
} else if typ.Kind() == types.UnsafePointer {
encoding = llvm.DW_ATE_address
}
case *types.Pointer:
encoding = llvm.DW_ATE_address
}
// TODO: other types
dityp = c.dibuilder.CreateBasicType(llvm.DIBasicType{
Name: name,
SizeInBits: sizeInBytes * 8,
Encoding: encoding,
})
c.ditypes[name] = dityp
return dityp, nil
}
}
// Wrap an interface method function pointer. The wrapper takes in a pointer to
// the underlying value, dereferences it, and calls the real method. This
// wrapper is only needed when the interface value actually doesn't fit in a
// pointer and a pointer to the value must be created.
func (c *Compiler) wrapInterfaceInvoke(f *ir.Function) (llvm.Value, error) {
receiverType, err := c.getLLVMType(f.Params[0].Type())
if err != nil {
return llvm.Value{}, err
}
expandedReceiverType := c.expandFormalParamType(receiverType)
if c.targetData.TypeAllocSize(receiverType) <= c.targetData.TypeAllocSize(c.i8ptrType) && len(expandedReceiverType) == 1 {
// nothing to wrap
return f.LLVMFn, nil
}
// create wrapper function
fnType := f.LLVMFn.Type().ElementType()
paramTypes := append([]llvm.Type{c.i8ptrType}, fnType.ParamTypes()[len(expandedReceiverType):]...)
wrapFnType := llvm.FunctionType(fnType.ReturnType(), paramTypes, false)
wrapper := llvm.AddFunction(c.mod, f.LinkName()+"$invoke", wrapFnType)
wrapper.SetLinkage(llvm.InternalLinkage)
// add debug info
pos := c.ir.Program.Fset.Position(f.Pos())
difunc, err := c.attachDebugInfoRaw(f, wrapper, "$invoke", pos.Filename, pos.Line)
if err != nil {
return llvm.Value{}, err
}
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
// set up IR builder
block := c.ctx.AddBasicBlock(wrapper, "entry")
c.builder.SetInsertPointAtEnd(block)
var receiverPtr llvm.Value
if c.targetData.TypeAllocSize(receiverType) > c.targetData.TypeAllocSize(c.i8ptrType) {
// The receiver is passed in using a pointer. We have to load it here
// and pass it by value to the real function.
// Load the underlying value.
receiverPtrType := llvm.PointerType(receiverType, 0)
receiverPtr = c.builder.CreateBitCast(wrapper.Param(0), receiverPtrType, "receiver.ptr")
} else if len(expandedReceiverType) != 1 {
// The value is stored in the interface, but it is of type struct which
// is expanded to multiple parameters (e.g. {i8, i8}). So we have to
// receive the struct as parameter, expand it, and pass it on to the
// real function.
// Cast the passed-in i8* to the struct value (using an alloca) and
// extract its values.
alloca := c.builder.CreateAlloca(c.i8ptrType, "receiver.alloca")
c.builder.CreateStore(wrapper.Param(0), alloca)
receiverPtr = c.builder.CreateBitCast(alloca, llvm.PointerType(receiverType, 0), "receiver.ptr")
} else {
panic("unreachable")
}
receiverValue := c.builder.CreateLoad(receiverPtr, "receiver")
params := append(c.expandFormalParam(receiverValue), wrapper.Params()[1:]...)
if fnType.ReturnType().TypeKind() == llvm.VoidTypeKind {
c.builder.CreateCall(f.LLVMFn, params, "")
c.builder.CreateRetVoid()
} else {
ret := c.builder.CreateCall(f.LLVMFn, params, "ret")
c.builder.CreateRet(ret)
}
return wrapper, nil
}
func (c *Compiler) parseFuncDecl(f *ir.Function) (*Frame, error) {
frame := &Frame{
fn: f,
locals: make(map[ssa.Value]llvm.Value),
blocks: make(map[*ssa.BasicBlock]llvm.BasicBlock),
blocking: c.ir.IsBlocking(f),
}
var retType llvm.Type
if frame.blocking {
if f.Signature.Results() != nil {
return nil, errors.New("todo: return values in blocking function")
}
retType = c.i8ptrType
} else if f.Signature.Results() == nil {
retType = llvm.VoidType()
} else if f.Signature.Results().Len() == 1 {
var err error
retType, err = c.getLLVMType(f.Signature.Results().At(0).Type())
if err != nil {
return nil, err
}
} else {
results := make([]llvm.Type, 0, f.Signature.Results().Len())
for i := 0; i < f.Signature.Results().Len(); i++ {
typ, err := c.getLLVMType(f.Signature.Results().At(i).Type())
if err != nil {
return nil, err
}
results = append(results, typ)
}
retType = llvm.StructType(results, false)
}
var paramTypes []llvm.Type
if frame.blocking {
paramTypes = append(paramTypes, c.i8ptrType) // parent coroutine
}
for _, param := range f.Params {
paramType, err := c.getLLVMType(param.Type())
if err != nil {
return nil, err
}
paramTypeFragments := c.expandFormalParamType(paramType)
paramTypes = append(paramTypes, paramTypeFragments...)
}
if c.ir.FunctionNeedsContext(f) {
// This function gets an extra parameter: the context pointer (for
// closures and bound methods). Add it as an extra paramter here.
paramTypes = append(paramTypes, c.i8ptrType)
}
fnType := llvm.FunctionType(retType, paramTypes, false)
name := f.LinkName()
frame.fn.LLVMFn = c.mod.NamedFunction(name)
if frame.fn.LLVMFn.IsNil() {
frame.fn.LLVMFn = llvm.AddFunction(c.mod, name, fnType)
}
if c.Debug && f.Synthetic == "package initializer" {
difunc, err := c.attachDebugInfoRaw(f, f.LLVMFn, "", "", 0)
if err != nil {
return nil, err
}
frame.difunc = difunc
} else if c.Debug && f.Syntax() != nil && len(f.Blocks) != 0 {
// Create debug info file if needed.
difunc, err := c.attachDebugInfo(f)
if err != nil {
return nil, err
}
frame.difunc = difunc
}
return frame, nil
}
func (c *Compiler) attachDebugInfo(f *ir.Function) (llvm.Metadata, error) {
pos := c.ir.Program.Fset.Position(f.Syntax().Pos())
return c.attachDebugInfoRaw(f, f.LLVMFn, "", pos.Filename, pos.Line)
}
func (c *Compiler) attachDebugInfoRaw(f *ir.Function, llvmFn llvm.Value, suffix, filename string, line int) (llvm.Metadata, error) {
if _, ok := c.difiles[filename]; !ok {
dir, file := filepath.Split(filename)
if dir != "" {
dir = dir[:len(dir)-1]
}
c.difiles[filename] = c.dibuilder.CreateFile(file, dir)
}
// Debug info for this function.
diparams := make([]llvm.Metadata, 0, len(f.Params))
for _, param := range f.Params {
ditype, err := c.getDIType(param.Type())
if err != nil {
return llvm.Metadata{}, err
}
diparams = append(diparams, ditype)
}
diFuncType := c.dibuilder.CreateSubroutineType(llvm.DISubroutineType{
File: c.difiles[filename],
Parameters: diparams,
Flags: 0, // ?
})
difunc := c.dibuilder.CreateFunction(c.difiles[filename], llvm.DIFunction{
Name: f.RelString(nil) + suffix,
LinkageName: f.LinkName() + suffix,
File: c.difiles[filename],
Line: line,
Type: diFuncType,
LocalToUnit: true,
IsDefinition: true,
ScopeLine: 0,
Flags: llvm.FlagPrototyped,
Optimized: true,
})
llvmFn.SetSubprogram(difunc)
return difunc, nil
}
// Create a new global hashmap bucket, for map initialization.
func (c *Compiler) initMapNewBucket(prefix string, mapType *types.Map) (llvm.Value, uint64, uint64, error) {
llvmKeyType, err := c.getLLVMType(mapType.Key().Underlying())
if err != nil {
return llvm.Value{}, 0, 0, err
}
llvmValueType, err := c.getLLVMType(mapType.Elem().Underlying())
if err != nil {
return llvm.Value{}, 0, 0, err
}
keySize := c.targetData.TypeAllocSize(llvmKeyType)
valueSize := c.targetData.TypeAllocSize(llvmValueType)
bucketType := llvm.StructType([]llvm.Type{
llvm.ArrayType(llvm.Int8Type(), 8), // tophash
c.i8ptrType, // next bucket
llvm.ArrayType(llvmKeyType, 8), // key type
llvm.ArrayType(llvmValueType, 8), // value type
}, false)
bucketValue, err := getZeroValue(bucketType)
if err != nil {
return llvm.Value{}, 0, 0, err
}
bucket := llvm.AddGlobal(c.mod, bucketType, prefix+"$hashmap$bucket")
bucket.SetInitializer(bucketValue)
bucket.SetLinkage(llvm.InternalLinkage)
return bucket, keySize, valueSize, nil
}
func (c *Compiler) parseGlobalInitializer(g *ir.Global) error {
if g.IsExtern() {
return nil
}
llvmValue, err := c.getInterpretedValue(g.LinkName(), g.Initializer())
if err != nil {
return err
}
g.LLVMGlobal.SetInitializer(llvmValue)
return nil
}
// Turn a computed Value type (ConstValue, ArrayValue, etc.) into a LLVM value.
// This is used to set the initializer of globals after they have been
// calculated by the package initializer interpreter.
func (c *Compiler) getInterpretedValue(prefix string, value ir.Value) (llvm.Value, error) {
switch value := value.(type) {
case *ir.ArrayValue:
vals := make([]llvm.Value, len(value.Elems))
for i, elem := range value.Elems {
val, err := c.getInterpretedValue(prefix+"$arrayval", elem)
if err != nil {
return llvm.Value{}, err
}
vals[i] = val
}
subTyp, err := c.getLLVMType(value.ElemType)
if err != nil {
return llvm.Value{}, err
}
return llvm.ConstArray(subTyp, vals), nil
case *ir.ConstValue:
return c.parseConst(prefix, value.Expr)
case *ir.FunctionValue:
if value.Elem == nil {
llvmType, err := c.getLLVMType(value.Type)
if err != nil {
return llvm.Value{}, err
}
return getZeroValue(llvmType)
}
fn := c.ir.GetFunction(value.Elem)
ptr := fn.LLVMFn
if c.ir.SignatureNeedsContext(fn.Signature) {
// Create closure value: {context, function pointer}
ptr = llvm.ConstStruct([]llvm.Value{llvm.ConstPointerNull(c.i8ptrType), ptr}, false)
}
return ptr, nil
case *ir.GlobalValue:
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
ptr := llvm.ConstInBoundsGEP(value.Global.LLVMGlobal, []llvm.Value{zero})
return ptr, nil
case *ir.InterfaceValue:
underlying := llvm.ConstPointerNull(c.i8ptrType) // could be any 0 value
if value.Elem != nil {
elem, err := c.getInterpretedValue(prefix, value.Elem)
if err != nil {
return llvm.Value{}, err
}
underlying = elem
}
return c.parseMakeInterface(underlying, value.Type, prefix)
case *ir.MapValue:
// Create initial bucket.
firstBucketGlobal, keySize, valueSize, err := c.initMapNewBucket(prefix, value.Type)
if err != nil {
return llvm.Value{}, err
}
// Insert each key/value pair in the hashmap.
bucketGlobal := firstBucketGlobal
for i, key := range value.Keys {
llvmKey, err := c.getInterpretedValue(prefix, key)
if err != nil {
return llvm.Value{}, nil
}
llvmValue, err := c.getInterpretedValue(prefix, value.Values[i])
if err != nil {
return llvm.Value{}, nil
}
constVal := key.(*ir.ConstValue).Expr
var keyBuf []byte
switch constVal.Type().Underlying().(*types.Basic).Kind() {
case types.String:
keyBuf = []byte(constant.StringVal(constVal.Value))
case types.Int:
keyBuf = make([]byte, c.targetData.TypeAllocSize(c.intType))
n, _ := constant.Uint64Val(constVal.Value)
for i := range keyBuf {
keyBuf[i] = byte(n)
n >>= 8
}
default:
return llvm.Value{}, errors.New("todo: init: map key not implemented: " + constVal.Type().Underlying().String())
}
hash := hashmapHash(keyBuf)
if i%8 == 0 && i != 0 {
// Bucket is full, create a new one.
newBucketGlobal, _, _, err := c.initMapNewBucket(prefix, value.Type)
if err != nil {
return llvm.Value{}, err
}
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
newBucketPtr := llvm.ConstInBoundsGEP(newBucketGlobal, []llvm.Value{zero})
newBucketPtrCast := llvm.ConstBitCast(newBucketPtr, c.i8ptrType)
// insert pointer into old bucket
bucket := bucketGlobal.Initializer()
bucket = llvm.ConstInsertValue(bucket, newBucketPtrCast, []uint32{1})
bucketGlobal.SetInitializer(bucket)
// switch to next bucket
bucketGlobal = newBucketGlobal
}
tophashValue := llvm.ConstInt(llvm.Int8Type(), uint64(hashmapTopHash(hash)), false)
bucket := bucketGlobal.Initializer()
bucket = llvm.ConstInsertValue(bucket, tophashValue, []uint32{0, uint32(i % 8)})
bucket = llvm.ConstInsertValue(bucket, llvmKey, []uint32{2, uint32(i % 8)})
bucket = llvm.ConstInsertValue(bucket, llvmValue, []uint32{3, uint32(i % 8)})
bucketGlobal.SetInitializer(bucket)
}
// Create the hashmap itself.
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
bucketPtr := llvm.ConstInBoundsGEP(bucketGlobal, []llvm.Value{zero})
hashmapType := c.mod.GetTypeByName("runtime.hashmap")
hashmap := llvm.ConstNamedStruct(hashmapType, []llvm.Value{
llvm.ConstPointerNull(llvm.PointerType(hashmapType, 0)), // next
llvm.ConstBitCast(bucketPtr, c.i8ptrType), // buckets
llvm.ConstInt(c.lenType, uint64(len(value.Keys)), false), // count
llvm.ConstInt(llvm.Int8Type(), keySize, false), // keySize
llvm.ConstInt(llvm.Int8Type(), valueSize, false), // valueSize
llvm.ConstInt(llvm.Int8Type(), 0, false), // bucketBits
})
// Create a pointer to this hashmap.
hashmapPtr := llvm.AddGlobal(c.mod, hashmap.Type(), prefix+"$hashmap")
hashmapPtr.SetInitializer(hashmap)
hashmapPtr.SetLinkage(llvm.InternalLinkage)
return llvm.ConstInBoundsGEP(hashmapPtr, []llvm.Value{zero}), nil
case *ir.PointerBitCastValue:
elem, err := c.getInterpretedValue(prefix, value.Elem)
if err != nil {
return llvm.Value{}, err
}
llvmType, err := c.getLLVMType(value.Type)
if err != nil {
return llvm.Value{}, err
}
return llvm.ConstBitCast(elem, llvmType), nil
case *ir.PointerToUintptrValue:
elem, err := c.getInterpretedValue(prefix, value.Elem)
if err != nil {
return llvm.Value{}, err
}
return llvm.ConstPtrToInt(elem, c.uintptrType), nil
case *ir.PointerValue:
if value.Elem == nil {
typ, err := c.getLLVMType(value.Type)
if err != nil {
return llvm.Value{}, err
}
return llvm.ConstPointerNull(typ), nil
}
elem, err := c.getInterpretedValue(prefix, *value.Elem)
if err != nil {
return llvm.Value{}, err
}
obj := llvm.AddGlobal(c.mod, elem.Type(), prefix+"$ptrvalue")
obj.SetInitializer(elem)
obj.SetLinkage(llvm.InternalLinkage)
elem = obj
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
ptr := llvm.ConstInBoundsGEP(elem, []llvm.Value{zero})
return ptr, nil
case *ir.SliceValue:
var globalPtr llvm.Value
var arrayLength uint64
if value.Array == nil {
arrayType, err := c.getLLVMType(value.Type.Elem())
if err != nil {
return llvm.Value{}, err
}
globalPtr = llvm.ConstPointerNull(llvm.PointerType(arrayType, 0))
} else {
// make array
array, err := c.getInterpretedValue(prefix, value.Array)
if err != nil {
return llvm.Value{}, err
}
// make global from array
global := llvm.AddGlobal(c.mod, array.Type(), prefix+"$array")
global.SetInitializer(array)
global.SetLinkage(llvm.InternalLinkage)
// get pointer to global
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
globalPtr = c.builder.CreateInBoundsGEP(global, []llvm.Value{zero, zero}, "")
arrayLength = uint64(len(value.Array.Elems))
}
// make slice
sliceTyp, err := c.getLLVMType(value.Type)
if err != nil {
return llvm.Value{}, err
}
llvmLen := llvm.ConstInt(c.lenType, arrayLength, false)
slice := llvm.ConstNamedStruct(sliceTyp, []llvm.Value{
globalPtr, // ptr
llvmLen, // len
llvmLen, // cap
})
return slice, nil
case *ir.StructValue:
fields := make([]llvm.Value, len(value.Fields))
for i, elem := range value.Fields {
field, err := c.getInterpretedValue(prefix, elem)
if err != nil {
return llvm.Value{}, err
}
fields[i] = field
}
switch value.Type.(type) {
case *types.Named:
llvmType, err := c.getLLVMType(value.Type)
if err != nil {
return llvm.Value{}, err
}
return llvm.ConstNamedStruct(llvmType, fields), nil
case *types.Struct:
return llvm.ConstStruct(fields, false), nil
default:
return llvm.Value{}, errors.New("init: unknown struct type: " + value.Type.String())
}
case *ir.ZeroBasicValue:
llvmType, err := c.getLLVMType(value.Type)
if err != nil {
return llvm.Value{}, err
}
return getZeroValue(llvmType)
default:
return llvm.Value{}, errors.New("init: unknown initializer type: " + fmt.Sprintf("%#v", value))
}
}
func (c *Compiler) parseFunc(frame *Frame) error {
if c.DumpSSA {
fmt.Printf("\nfunc %s:\n", frame.fn.Function)
}
if !frame.fn.IsExported() {
frame.fn.LLVMFn.SetLinkage(llvm.InternalLinkage)
}
if frame.fn.IsInterrupt() && strings.HasPrefix(c.Triple, "avr") {
frame.fn.LLVMFn.SetFunctionCallConv(85) // CallingConv::AVR_SIGNAL
}
if c.Debug {
pos := c.ir.Program.Fset.Position(frame.fn.Pos())
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), frame.difunc, llvm.Metadata{})
}
// Pre-create all basic blocks in the function.
for _, block := range frame.fn.DomPreorder() {
llvmBlock := c.ctx.AddBasicBlock(frame.fn.LLVMFn, block.Comment)
frame.blocks[block] = llvmBlock
}
if frame.blocking {
frame.cleanupBlock = c.ctx.AddBasicBlock(frame.fn.LLVMFn, "task.cleanup")
frame.suspendBlock = c.ctx.AddBasicBlock(frame.fn.LLVMFn, "task.suspend")
}
entryBlock := frame.blocks[frame.fn.Blocks[0]]
c.builder.SetInsertPointAtEnd(entryBlock)
// Load function parameters
llvmParamIndex := 0
for i, param := range frame.fn.Params {
llvmType, err := c.getLLVMType(param.Type())
if err != nil {
return err
}
fields := make([]llvm.Value, 0, 1)
for range c.expandFormalParamType(llvmType) {
fields = append(fields, frame.fn.LLVMFn.Param(llvmParamIndex))
llvmParamIndex++
}
frame.locals[param] = c.collapseFormalParam(llvmType, fields)
// Add debug information to this parameter (if available)
if c.Debug && frame.fn.Syntax() != nil {
pos := c.ir.Program.Fset.Position(frame.fn.Syntax().Pos())
dityp, err := c.getDIType(param.Type())
if err != nil {
return err
}
c.dibuilder.CreateParameterVariable(frame.difunc, llvm.DIParameterVariable{
Name: param.Name(),
File: c.difiles[pos.Filename],
Line: pos.Line,
Type: dityp,
AlwaysPreserve: true,
ArgNo: i + 1,
})
// TODO: set the value of this parameter.
}
}
// Load free variables from the context. This is a closure (or bound
// method).
if len(frame.fn.FreeVars) != 0 {
if !c.ir.FunctionNeedsContext(frame.fn) {
panic("free variables on function without context")
}
context := frame.fn.LLVMFn.LastParam()
// Determine the context type. It's a struct containing all variables.
freeVarTypes := make([]llvm.Type, 0, len(frame.fn.FreeVars))
for _, freeVar := range frame.fn.FreeVars {
typ, err := c.getLLVMType(freeVar.Type())
if err != nil {
return err
}
freeVarTypes = append(freeVarTypes, typ)
}
contextType := llvm.StructType(freeVarTypes, false)
// Get a correctly-typed pointer to the context.
contextAlloc := llvm.Value{}
if c.targetData.TypeAllocSize(contextType) <= c.targetData.TypeAllocSize(c.i8ptrType) {
// Context stored directly in pointer. Load it using an alloca.
contextRawAlloc := c.builder.CreateAlloca(llvm.PointerType(c.i8ptrType, 0), "")
contextRawValue := c.builder.CreateBitCast(context, llvm.PointerType(c.i8ptrType, 0), "")
c.builder.CreateStore(contextRawValue, contextRawAlloc)
contextAlloc = c.builder.CreateBitCast(contextRawAlloc, llvm.PointerType(contextType, 0), "")
} else {
// Context stored in the heap. Bitcast the passed-in pointer to the
// correct pointer type.
contextAlloc = c.builder.CreateBitCast(context, llvm.PointerType(contextType, 0), "")
}
// Load each free variable from the context.
// A free variable is always a pointer when this is a closure, but it
// can be another type when it is a wrapper for a bound method (these
// wrappers are generated by the ssa package).
for i, freeVar := range frame.fn.FreeVars {
indices := []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
llvm.ConstInt(llvm.Int32Type(), uint64(i), false),
}
gep := c.builder.CreateInBoundsGEP(contextAlloc, indices, "")
frame.locals[freeVar] = c.builder.CreateLoad(gep, "")
}
}
if frame.fn.Recover != nil {
// Create defer list pointer.
deferType := llvm.PointerType(c.mod.GetTypeByName("runtime._defer"), 0)
frame.deferPtr = c.builder.CreateAlloca(deferType, "deferPtr")
c.builder.CreateStore(llvm.ConstPointerNull(deferType), frame.deferPtr)
}
if frame.blocking {
// Coroutine initialization.
taskState := c.builder.CreateAlloca(c.mod.GetTypeByName("runtime.taskState"), "task.state")
stateI8 := c.builder.CreateBitCast(taskState, c.i8ptrType, "task.state.i8")
id := c.builder.CreateCall(c.coroIdFunc, []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
stateI8,
llvm.ConstNull(c.i8ptrType),
llvm.ConstNull(c.i8ptrType),
}, "task.token")
size := c.builder.CreateCall(c.coroSizeFunc, nil, "task.size")
if c.targetData.TypeAllocSize(size.Type()) > c.targetData.TypeAllocSize(c.uintptrType) {
size = c.builder.CreateTrunc(size, c.uintptrType, "task.size.uintptr")
} else if c.targetData.TypeAllocSize(size.Type()) < c.targetData.TypeAllocSize(c.uintptrType) {
size = c.builder.CreateZExt(size, c.uintptrType, "task.size.uintptr")
}
data := c.createRuntimeCall("alloc", []llvm.Value{size}, "task.data")
frame.taskHandle = c.builder.CreateCall(c.coroBeginFunc, []llvm.Value{id, data}, "task.handle")
// Coroutine cleanup. Free resources associated with this coroutine.
c.builder.SetInsertPointAtEnd(frame.cleanupBlock)
mem := c.builder.CreateCall(c.coroFreeFunc, []llvm.Value{id, frame.taskHandle}, "task.data.free")
c.createRuntimeCall("free", []llvm.Value{mem}, "")
// re-insert parent coroutine
c.createRuntimeCall("yieldToScheduler", []llvm.Value{frame.fn.LLVMFn.FirstParam()}, "")
c.builder.CreateBr(frame.suspendBlock)
// Coroutine suspend. A call to llvm.coro.suspend() will branch here.
c.builder.SetInsertPointAtEnd(frame.suspendBlock)
c.builder.CreateCall(c.coroEndFunc, []llvm.Value{frame.taskHandle, llvm.ConstInt(llvm.Int1Type(), 0, false)}, "unused")
c.builder.CreateRet(frame.taskHandle)
}
// Fill blocks with instructions.
for _, block := range frame.fn.DomPreorder() {
if c.DumpSSA {
fmt.Printf("%s:\n", block.Comment)
}
c.builder.SetInsertPointAtEnd(frame.blocks[block])
frame.currentBlock = block
for _, instr := range block.Instrs {
if _, ok := instr.(*ssa.DebugRef); ok {
continue
}
if c.DumpSSA {
if val, ok := instr.(ssa.Value); ok && val.Name() != "" {
fmt.Printf("\t%s = %s\n", val.Name(), val.String())
} else {
fmt.Printf("\t%s\n", instr.String())
}
}
err := c.parseInstr(frame, instr)
if err != nil {
return err
}
}
if frame.fn.Name() == "init" && len(block.Instrs) == 0 {
c.builder.CreateRetVoid()
}
}
// Resolve phi nodes
for _, phi := range frame.phis {
block := phi.ssa.Block()
for i, edge := range phi.ssa.Edges {
llvmVal, err := c.parseExpr(frame, edge)
if err != nil {
return err
}
llvmBlock := frame.blocks[block.Preds[i]]
phi.llvm.AddIncoming([]llvm.Value{llvmVal}, []llvm.BasicBlock{llvmBlock})
}
}
return nil
}
func (c *Compiler) parseInstr(frame *Frame, instr ssa.Instruction) error {
if c.Debug {
pos := c.ir.Program.Fset.Position(instr.Pos())
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), frame.difunc, llvm.Metadata{})
}
switch instr := instr.(type) {
case ssa.Value:
value, err := c.parseExpr(frame, instr)
if err == ir.ErrCGoWrapper {
// Ignore CGo global variables which we don't use.
return nil
}
frame.locals[instr] = value
return err
case *ssa.DebugRef:
return nil // ignore
case *ssa.Defer:
if _, ok := instr.Call.Value.(*ssa.Function); !ok || instr.Call.IsInvoke() {
return errors.New("todo: non-direct function calls in defer")
}
fn := c.ir.GetFunction(instr.Call.Value.(*ssa.Function))
// The pointer to the previous defer struct, which we will replace to
// make a linked list.
next := c.builder.CreateLoad(frame.deferPtr, "defer.next")
// Try to find the wrapper $defer function.
deferName := fn.LinkName() + "$defer"
callback := c.mod.NamedFunction(deferName)
if callback.IsNil() {
// Not found, have to add it.
deferFuncType := llvm.FunctionType(llvm.VoidType(), []llvm.Type{next.Type()}, false)
callback = llvm.AddFunction(c.mod, deferName, deferFuncType)
c.deferFuncs = append(c.deferFuncs, fn)
}
// Collect all values to be put in the struct (starting with
// runtime._defer fields).
values := []llvm.Value{callback, next}
valueTypes := []llvm.Type{callback.Type(), next.Type()}
for _, param := range instr.Call.Args {
llvmParam, err := c.parseExpr(frame, param)
if err != nil {
return err
}
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
// Make a struct out of it.
contextType := llvm.StructType(valueTypes, false)
context, err := getZeroValue(contextType)
if err != nil {
return err
}
for i, value := range values {
context = c.builder.CreateInsertValue(context, value, i, "")
}
// Put this struct in an alloca.
alloca := c.builder.CreateAlloca(contextType, "defer.alloca")
c.builder.CreateStore(context, alloca)
// Push it on top of the linked list by replacing deferPtr.
allocaCast := c.builder.CreateBitCast(alloca, next.Type(), "defer.alloca.cast")
c.builder.CreateStore(allocaCast, frame.deferPtr)
return nil
case *ssa.Go:
if instr.Common().Method != nil {
return errors.New("todo: go on method receiver")
}
// Execute non-blocking calls (including builtins) directly.
// parentHandle param is ignored.
if !c.ir.IsBlocking(c.ir.GetFunction(instr.Common().Value.(*ssa.Function))) {
_, err := c.parseCall(frame, instr.Common(), llvm.Value{})
return err // probably nil
}
// Start this goroutine.
// parentHandle is nil, as the goroutine has no parent frame (it's a new
// stack).
handle, err := c.parseCall(frame, instr.Common(), llvm.Value{})
if err != nil {
return err
}
c.createRuntimeCall("yieldToScheduler", []llvm.Value{handle}, "")
return nil
case *ssa.If:
cond, err := c.parseExpr(frame, instr.Cond)
if err != nil {
return err
}
block := instr.Block()
blockThen := frame.blocks[block.Succs[0]]
blockElse := frame.blocks[block.Succs[1]]
c.builder.CreateCondBr(cond, blockThen, blockElse)
return nil
case *ssa.Jump:
blockJump := frame.blocks[instr.Block().Succs[0]]
c.builder.CreateBr(blockJump)
return nil
case *ssa.MapUpdate:
m, err := c.parseExpr(frame, instr.Map)
if err != nil {
return err
}
key, err := c.parseExpr(frame, instr.Key)
if err != nil {
return err
}
value, err := c.parseExpr(frame, instr.Value)
if err != nil {
return err
}
mapType := instr.Map.Type().Underlying().(*types.Map)
switch keyType := mapType.Key().Underlying().(type) {
case *types.Basic:
valueAlloca := c.builder.CreateAlloca(value.Type(), "hashmap.value")
c.builder.CreateStore(value, valueAlloca)
valuePtr := c.builder.CreateBitCast(valueAlloca, c.i8ptrType, "hashmap.valueptr")
if keyType.Info()&types.IsString != 0 {
params := []llvm.Value{m, key, valuePtr}
c.createRuntimeCall("hashmapStringSet", params, "")
return nil
} else if keyType.Info()&(types.IsBoolean|types.IsInteger) != 0 {
keyAlloca := c.builder.CreateAlloca(key.Type(), "hashmap.key")
c.builder.CreateStore(key, keyAlloca)
keyPtr := c.builder.CreateBitCast(keyAlloca, c.i8ptrType, "hashmap.keyptr")
params := []llvm.Value{m, keyPtr, valuePtr}
c.createRuntimeCall("hashmapBinarySet", params, "")
return nil
} else {
return errors.New("todo: map update key type: " + keyType.String())
}
default:
return errors.New("todo: map update key type: " + keyType.String())
}
case *ssa.Panic:
value, err := c.parseExpr(frame, instr.X)
if err != nil {
return err
}
c.createRuntimeCall("_panic", []llvm.Value{value}, "")
c.builder.CreateUnreachable()
return nil
case *ssa.Return:
if frame.blocking {
if len(instr.Results) != 0 {
return errors.New("todo: return values from blocking function")
}
// Final suspend.
continuePoint := c.builder.CreateCall(c.coroSuspendFunc, []llvm.Value{
llvm.ConstNull(c.ctx.TokenType()),
llvm.ConstInt(llvm.Int1Type(), 1, false), // final=true
}, "")
sw := c.builder.CreateSwitch(continuePoint, frame.suspendBlock, 2)
sw.AddCase(llvm.ConstInt(llvm.Int8Type(), 1, false), frame.cleanupBlock)
return nil
} else {
if len(instr.Results) == 0 {
c.builder.CreateRetVoid()
return nil
} else if len(instr.Results) == 1 {
val, err := c.parseExpr(frame, instr.Results[0])
if err != nil {
return err
}
c.builder.CreateRet(val)
return nil
} else {
// Multiple return values. Put them all in a struct.
retVal, err := getZeroValue(frame.fn.LLVMFn.Type().ElementType().ReturnType())
if err != nil {
return err
}
for i, result := range instr.Results {
val, err := c.parseExpr(frame, result)
if err != nil {
return err
}
retVal = c.builder.CreateInsertValue(retVal, val, i, "")
}
c.builder.CreateRet(retVal)
return nil
}
}
case *ssa.RunDefers:
deferData := c.builder.CreateLoad(frame.deferPtr, "")
c.createRuntimeCall("rundefers", []llvm.Value{deferData}, "")
return nil
case *ssa.Store:
llvmAddr, err := c.parseExpr(frame, instr.Addr)
if err == ir.ErrCGoWrapper {
// Ignore CGo global variables which we don't use.
return nil
}
if err != nil {
return err
}
llvmVal, err := c.parseExpr(frame, instr.Val)
if err != nil {
return err
}
store := c.builder.CreateStore(llvmVal, llvmAddr)
valType := instr.Addr.Type().(*types.Pointer).Elem()
if c.ir.IsVolatile(valType) {
// Volatile store, for memory-mapped registers.
store.SetVolatile(true)
}
return nil
default:
return errors.New("unknown instruction: " + instr.String())
}
}
func (c *Compiler) parseBuiltin(frame *Frame, args []ssa.Value, callName string) (llvm.Value, error) {
switch callName {
case "cap":
value, err := c.parseExpr(frame, args[0])
if err != nil {
return llvm.Value{}, err
}
switch args[0].Type().(type) {
case *types.Slice:
return c.builder.CreateExtractValue(value, 2, "cap"), nil
default:
return llvm.Value{}, errors.New("todo: cap: unknown type")
}
case "copy":
dst, err := c.parseExpr(frame, args[0])
if err != nil {
return llvm.Value{}, err
}
src, err := c.parseExpr(frame, args[1])
if err != nil {
return llvm.Value{}, err
}
dstLen := c.builder.CreateExtractValue(dst, 1, "copy.dstLen")
srcLen := c.builder.CreateExtractValue(src, 1, "copy.srcLen")
dstBuf := c.builder.CreateExtractValue(dst, 0, "copy.dstArray")
srcBuf := c.builder.CreateExtractValue(src, 0, "copy.srcArray")
elemType := dstBuf.Type().ElementType()
dstBuf = c.builder.CreateBitCast(dstBuf, c.i8ptrType, "copy.dstPtr")
srcBuf = c.builder.CreateBitCast(srcBuf, c.i8ptrType, "copy.srcPtr")
elemSize := llvm.ConstInt(c.uintptrType, c.targetData.TypeAllocSize(elemType), false)
return c.createRuntimeCall("sliceCopy", []llvm.Value{dstBuf, srcBuf, dstLen, srcLen, elemSize}, "copy.n"), nil
case "len":
value, err := c.parseExpr(frame, args[0])
if err != nil {
return llvm.Value{}, err
}
var llvmLen llvm.Value
switch args[0].Type().(type) {
case *types.Basic, *types.Slice:
// string or slice
llvmLen = c.builder.CreateExtractValue(value, 1, "len")
case *types.Map:
indices := []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
llvm.ConstInt(llvm.Int32Type(), 2, false), // hashmap.count
}
ptr := c.builder.CreateGEP(value, indices, "lenptr")
llvmLen = c.builder.CreateLoad(ptr, "len")
default:
return llvm.Value{}, errors.New("todo: len: unknown type")
}
if c.targetData.TypeAllocSize(llvmLen.Type()) < c.targetData.TypeAllocSize(c.intType) {
llvmLen = c.builder.CreateZExt(llvmLen, c.intType, "len.int")
}
return llvmLen, nil
case "print", "println":
for i, arg := range args {
if i >= 1 && callName == "println" {
c.createRuntimeCall("printspace", nil, "")
}
value, err := c.parseExpr(frame, arg)
if err != nil {
return llvm.Value{}, err
}
typ := arg.Type().Underlying()
switch typ := typ.(type) {
case *types.Basic:
switch typ.Kind() {
case types.String:
c.createRuntimeCall("printstring", []llvm.Value{value}, "")
case types.Uintptr:
c.createRuntimeCall("printptr", []llvm.Value{value}, "")
case types.UnsafePointer:
ptrValue := c.builder.CreatePtrToInt(value, c.uintptrType, "")
c.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "")
default:
// runtime.print{int,uint}{8,16,32,64}
if typ.Info()&types.IsInteger != 0 {
name := "print"
if typ.Info()&types.IsUnsigned != 0 {
name += "uint"
} else {
name += "int"
}
name += strconv.FormatUint(c.targetData.TypeAllocSize(value.Type())*8, 10)
c.createRuntimeCall(name, []llvm.Value{value}, "")
} else if typ.Kind() == types.Bool {
c.createRuntimeCall("printbool", []llvm.Value{value}, "")
} else if typ.Kind() == types.Float32 {
c.createRuntimeCall("printfloat32", []llvm.Value{value}, "")
} else if typ.Kind() == types.Float64 {
c.createRuntimeCall("printfloat64", []llvm.Value{value}, "")
} else {
return llvm.Value{}, errors.New("unknown basic arg type: " + typ.String())
}
}
case *types.Interface:
c.createRuntimeCall("printitf", []llvm.Value{value}, "")
case *types.Map:
c.createRuntimeCall("printmap", []llvm.Value{value}, "")
case *types.Pointer:
ptrValue := c.builder.CreatePtrToInt(value, c.uintptrType, "")
c.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "")
default:
return llvm.Value{}, errors.New("unknown arg type: " + typ.String())
}
}
if callName == "println" {
c.createRuntimeCall("printnl", nil, "")
}
return llvm.Value{}, nil // print() or println() returns void
case "ssa:wrapnilchk":
// TODO: do an actual nil check?
return c.parseExpr(frame, args[0])
default:
return llvm.Value{}, errors.New("todo: builtin: " + callName)
}
}
func (c *Compiler) parseFunctionCall(frame *Frame, args []ssa.Value, llvmFn, context llvm.Value, blocking bool, parentHandle llvm.Value) (llvm.Value, error) {
var params []llvm.Value
if blocking {
if parentHandle.IsNil() {
// Started from 'go' statement.
params = append(params, llvm.ConstNull(c.i8ptrType))
} else {
// Blocking function calls another blocking function.
params = append(params, parentHandle)
}
}
for _, param := range args {
val, err := c.parseExpr(frame, param)
if err != nil {
return llvm.Value{}, err
}
params = append(params, val)
}
if !context.IsNil() {
// This function takes a context parameter.
// Add it to the end of the parameter list.
params = append(params, context)
}
if frame.blocking && llvmFn.Name() == "time.Sleep" {
// Set task state to TASK_STATE_SLEEP and set the duration.
c.createRuntimeCall("sleepTask", []llvm.Value{frame.taskHandle, params[0]}, "")
// Yield to scheduler.
continuePoint := c.builder.CreateCall(c.coroSuspendFunc, []llvm.Value{
llvm.ConstNull(c.ctx.TokenType()),
llvm.ConstInt(llvm.Int1Type(), 0, false),
}, "")
wakeup := c.ctx.InsertBasicBlock(llvm.NextBasicBlock(c.builder.GetInsertBlock()), "task.wakeup")
sw := c.builder.CreateSwitch(continuePoint, frame.suspendBlock, 2)
sw.AddCase(llvm.ConstInt(llvm.Int8Type(), 0, false), wakeup)
sw.AddCase(llvm.ConstInt(llvm.Int8Type(), 1, false), frame.cleanupBlock)
c.builder.SetInsertPointAtEnd(wakeup)
return llvm.Value{}, nil
}
result := c.createCall(llvmFn, params, "")
if blocking && !parentHandle.IsNil() {
// Calling a blocking function as a regular function call.
// This is done by passing the current coroutine as a parameter to the
// new coroutine and dropping the current coroutine from the scheduler
// (with the TASK_STATE_CALL state). When the subroutine is finished, it
// will reactivate the parent (this frame) in it's destroy function.
c.createRuntimeCall("yieldToScheduler", []llvm.Value{result}, "")
// Set task state to TASK_STATE_CALL.
c.createRuntimeCall("waitForAsyncCall", []llvm.Value{frame.taskHandle}, "")
// Yield to the scheduler.
continuePoint := c.builder.CreateCall(c.coroSuspendFunc, []llvm.Value{
llvm.ConstNull(c.ctx.TokenType()),
llvm.ConstInt(llvm.Int1Type(), 0, false),
}, "")
resume := c.ctx.InsertBasicBlock(llvm.NextBasicBlock(c.builder.GetInsertBlock()), "task.callComplete")
sw := c.builder.CreateSwitch(continuePoint, frame.suspendBlock, 2)
sw.AddCase(llvm.ConstInt(llvm.Int8Type(), 0, false), resume)
sw.AddCase(llvm.ConstInt(llvm.Int8Type(), 1, false), frame.cleanupBlock)
c.builder.SetInsertPointAtEnd(resume)
}
return result, nil
}
func (c *Compiler) parseCall(frame *Frame, instr *ssa.CallCommon, parentHandle llvm.Value) (llvm.Value, error) {
if instr.IsInvoke() {
// Call an interface method with dynamic dispatch.
itf, err := c.parseExpr(frame, instr.Value) // interface
if err != nil {
return llvm.Value{}, err
}
llvmFnType, err := c.getLLVMType(instr.Method.Type())
if err != nil {
return llvm.Value{}, err
}
if c.ir.SignatureNeedsContext(instr.Method.Type().(*types.Signature)) {
// This is somewhat of a hack.
// getLLVMType() has created a closure type for us, but we don't
// actually want a closure type as an interface call can never be a
// closure call. So extract the function pointer type from the
// closure.
// This happens because somewhere the same function signature is
// used in a closure or bound method.
llvmFnType = llvmFnType.Subtypes()[1]
}
values := []llvm.Value{
itf,
llvm.ConstInt(llvm.Int16Type(), uint64(c.ir.MethodNum(instr.Method)), false),
}
fn := c.createRuntimeCall("interfaceMethod", values, "invoke.func")
fnCast := c.builder.CreateBitCast(fn, llvmFnType, "invoke.func.cast")
receiverValue := c.builder.CreateExtractValue(itf, 1, "invoke.func.receiver")
args := []llvm.Value{receiverValue}
for _, arg := range instr.Args {
val, err := c.parseExpr(frame, arg)
if err != nil {
return llvm.Value{}, err
}
args = append(args, val)
}
if c.ir.SignatureNeedsContext(instr.Method.Type().(*types.Signature)) {
// This function takes an extra context parameter. An interface call
// cannot also be a closure but we have to supply the nil pointer
// anyway.
args = append(args, llvm.ConstPointerNull(c.i8ptrType))
}
// TODO: blocking methods (needs analysis)
return c.createCall(fnCast, args, ""), nil
}
// Try to call the function directly for trivially static calls.
if fn := instr.StaticCallee(); fn != nil {
if fn.Name() == "Asm" && len(instr.Args) == 1 {
// Magic function: insert inline assembly instead of calling it.
if named, ok := instr.Args[0].Type().(*types.Named); ok && named.Obj().Name() == "__asm" {
fnType := llvm.FunctionType(llvm.VoidType(), []llvm.Type{}, false)
asm := constant.StringVal(instr.Args[0].(*ssa.Const).Value)
target := llvm.InlineAsm(fnType, asm, "", true, false, 0)
return c.builder.CreateCall(target, nil, ""), nil
}
}
targetFunc := c.ir.GetFunction(fn)
if targetFunc.LLVMFn.IsNil() {
return llvm.Value{}, errors.New("undefined function: " + targetFunc.LinkName())
}
var context llvm.Value
if c.ir.FunctionNeedsContext(targetFunc) {
// This function call is to a (potential) closure, not a regular
// function. See whether it is a closure and if so, call it as such.
// Else, supply a dummy nil pointer as the last parameter.
var err error
if mkClosure, ok := instr.Value.(*ssa.MakeClosure); ok {
// closure is {context, function pointer}
closure, err := c.parseExpr(frame, mkClosure)
if err != nil {
return llvm.Value{}, err
}
context = c.builder.CreateExtractValue(closure, 0, "")
} else {
context, err = getZeroValue(c.i8ptrType)
if err != nil {
return llvm.Value{}, err
}
}
}
return c.parseFunctionCall(frame, instr.Args, targetFunc.LLVMFn, context, c.ir.IsBlocking(targetFunc), parentHandle)
}
// Builtin or function pointer.
switch call := instr.Value.(type) {
case *ssa.Builtin:
return c.parseBuiltin(frame, instr.Args, call.Name())
default: // function pointer
value, err := c.parseExpr(frame, instr.Value)
if err != nil {
return llvm.Value{}, err
}
// TODO: blocking function pointers (needs analysis)
var context llvm.Value
if c.ir.SignatureNeedsContext(instr.Signature()) {
// 'value' is a closure, not a raw function pointer.
// Extract the function pointer and the context pointer.
// closure: {context, function pointer}
context = c.builder.CreateExtractValue(value, 0, "")
value = c.builder.CreateExtractValue(value, 1, "")
}
return c.parseFunctionCall(frame, instr.Args, value, context, false, parentHandle)
}
}
func (c *Compiler) emitBoundsCheck(frame *Frame, arrayLen, index llvm.Value) {
if frame.fn.IsNoBounds() {
// The //go:nobounds pragma was added to the function to avoid bounds
// checking.
return
}
// Optimize away trivial cases.
// LLVM would do this anyway with interprocedural optimizations, but it
// helps to see cases where bounds checking would really help.
if index.IsConstant() && arrayLen.IsConstant() {
index := index.SExtValue()
arrayLen := arrayLen.SExtValue()
if index >= 0 && index < arrayLen {
return
}
}
c.createRuntimeCall("lookupBoundsCheck", []llvm.Value{arrayLen, index}, "")
}
func (c *Compiler) parseExpr(frame *Frame, expr ssa.Value) (llvm.Value, error) {
if value, ok := frame.locals[expr]; ok {
// Value is a local variable that has already been computed.
if value.IsNil() {
return llvm.Value{}, errors.New("undefined local var (from cgo?)")
}
return value, nil
}
switch expr := expr.(type) {
case *ssa.Alloc:
typ, err := c.getLLVMType(expr.Type().Underlying().(*types.Pointer).Elem())
if err != nil {
return llvm.Value{}, err
}
var buf llvm.Value
if expr.Heap {
// TODO: escape analysis
size := llvm.ConstInt(c.uintptrType, c.targetData.TypeAllocSize(typ), false)
buf = c.createRuntimeCall("alloc", []llvm.Value{size}, expr.Comment)
buf = c.builder.CreateBitCast(buf, llvm.PointerType(typ, 0), "")
} else {
buf = c.builder.CreateAlloca(typ, expr.Comment)
zero, err := getZeroValue(typ)
if err != nil {
return llvm.Value{}, err
}
c.builder.CreateStore(zero, buf) // zero-initialize var
}
return buf, nil
case *ssa.BinOp:
return c.parseBinOp(frame, expr)
case *ssa.Call:
// Passing the current task here to the subroutine. It is only used when
// the subroutine is blocking.
return c.parseCall(frame, expr.Common(), frame.taskHandle)
case *ssa.ChangeInterface:
// Do not change between interface types: always use the underlying
// (concrete) type in the type number of the interface. Every method
// call on an interface will do a lookup which method to call.
// This is different from how the official Go compiler works, because of
// heap allocation and because it's easier to implement, see:
// https://research.swtch.com/interfaces
return c.parseExpr(frame, expr.X)
case *ssa.ChangeType:
x, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
// The only case when we need to bitcast is when casting between named
// struct types, as those are actually different in LLVM. Let's just
// bitcast all struct types for ease of use.
if _, ok := expr.Type().Underlying().(*types.Struct); ok {
llvmType, err := c.getLLVMType(expr.X.Type())
if err != nil {
return llvm.Value{}, err
}
return c.builder.CreateBitCast(x, llvmType, "changetype"), nil
}
return x, nil
case *ssa.Const:
return c.parseConst(frame.fn.LinkName(), expr)
case *ssa.Convert:
x, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
return c.parseConvert(expr.X.Type(), expr.Type(), x)
case *ssa.Extract:
value, err := c.parseExpr(frame, expr.Tuple)
if err != nil {
return llvm.Value{}, err
}
result := c.builder.CreateExtractValue(value, expr.Index, "")
return result, nil
case *ssa.Field:
value, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
result := c.builder.CreateExtractValue(value, expr.Field, "")
return result, nil
case *ssa.FieldAddr:
val, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
indices := []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
llvm.ConstInt(llvm.Int32Type(), uint64(expr.Field), false),
}
return c.builder.CreateGEP(val, indices, ""), nil
case *ssa.Function:
fn := c.ir.GetFunction(expr)
ptr := fn.LLVMFn
if c.ir.FunctionNeedsContext(fn) {
// Create closure for function pointer.
// Closure is: {context, function pointer}
ptr = llvm.ConstStruct([]llvm.Value{
llvm.ConstPointerNull(c.i8ptrType),
ptr,
}, false)
}
return ptr, nil
case *ssa.Global:
if strings.HasPrefix(expr.Name(), "__cgofn__cgo_") || strings.HasPrefix(expr.Name(), "_cgo_") {
// Ignore CGo global variables which we don't use.
return llvm.Value{}, ir.ErrCGoWrapper
}
value := c.ir.GetGlobal(expr).LLVMGlobal
if value.IsNil() {
return llvm.Value{}, errors.New("global not found: " + c.ir.GetGlobal(expr).LinkName())
}
return value, nil
case *ssa.Index:
array, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
index, err := c.parseExpr(frame, expr.Index)
if err != nil {
return llvm.Value{}, err
}
// Check bounds.
arrayLen := expr.X.Type().(*types.Array).Len()
arrayLenLLVM := llvm.ConstInt(c.lenType, uint64(arrayLen), false)
c.emitBoundsCheck(frame, arrayLenLLVM, index)
// Can't load directly from array (as index is non-constant), so have to
// do it using an alloca+gep+load.
alloca := c.builder.CreateAlloca(array.Type(), "")
c.builder.CreateStore(array, alloca)
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
ptr := c.builder.CreateGEP(alloca, []llvm.Value{zero, index}, "")
return c.builder.CreateLoad(ptr, ""), nil
case *ssa.IndexAddr:
val, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
index, err := c.parseExpr(frame, expr.Index)
if err != nil {
return llvm.Value{}, err
}
// Get buffer pointer and length
var bufptr, buflen llvm.Value
switch ptrTyp := expr.X.Type().Underlying().(type) {
case *types.Pointer:
typ := expr.X.Type().(*types.Pointer).Elem().Underlying()
switch typ := typ.(type) {
case *types.Array:
bufptr = val
buflen = llvm.ConstInt(c.lenType, uint64(typ.Len()), false)
default:
return llvm.Value{}, errors.New("todo: indexaddr: " + typ.String())
}
case *types.Slice:
bufptr = c.builder.CreateExtractValue(val, 0, "indexaddr.ptr")
buflen = c.builder.CreateExtractValue(val, 1, "indexaddr.len")
default:
return llvm.Value{}, errors.New("todo: indexaddr: " + ptrTyp.String())
}
// Bounds check.
// LLVM optimizes this away in most cases.
c.emitBoundsCheck(frame, buflen, index)
switch expr.X.Type().(type) {
case *types.Pointer:
indices := []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
index,
}
return c.builder.CreateGEP(bufptr, indices, ""), nil
case *types.Slice:
return c.builder.CreateGEP(bufptr, []llvm.Value{index}, ""), nil
default:
panic("unreachable")
}
case *ssa.Lookup:
if expr.CommaOk {
return llvm.Value{}, errors.New("todo: lookup with comma-ok")
}
value, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, nil
}
index, err := c.parseExpr(frame, expr.Index)
if err != nil {
return llvm.Value{}, nil
}
switch xType := expr.X.Type().(type) {
case *types.Basic:
// Value type must be a string, which is a basic type.
if xType.Kind() != types.String {
panic("lookup on non-string?")
}
// Bounds check.
// LLVM optimizes this away in most cases.
length, err := c.parseBuiltin(frame, []ssa.Value{expr.X}, "len")
if err != nil {
return llvm.Value{}, err // shouldn't happen
}
c.emitBoundsCheck(frame, length, index)
// Lookup byte
buf := c.builder.CreateExtractValue(value, 0, "")
bufPtr := c.builder.CreateGEP(buf, []llvm.Value{index}, "")
return c.builder.CreateLoad(bufPtr, ""), nil
case *types.Map:
switch keyType := xType.Key().Underlying().(type) {
case *types.Basic:
llvmValueType, err := c.getLLVMType(expr.Type())
if err != nil {
return llvm.Value{}, err
}
mapValueAlloca := c.builder.CreateAlloca(llvmValueType, "hashmap.value")
mapValuePtr := c.builder.CreateBitCast(mapValueAlloca, c.i8ptrType, "hashmap.valueptr")
if keyType.Info()&types.IsString != 0 {
params := []llvm.Value{value, index, mapValuePtr}
c.createRuntimeCall("hashmapStringGet", params, "")
return c.builder.CreateLoad(mapValueAlloca, ""), nil
} else if keyType.Info()&(types.IsBoolean|types.IsInteger) != 0 {
keyAlloca := c.builder.CreateAlloca(index.Type(), "hashmap.key")
c.builder.CreateStore(index, keyAlloca)
keyPtr := c.builder.CreateBitCast(keyAlloca, c.i8ptrType, "hashmap.keyptr")
params := []llvm.Value{value, keyPtr, mapValuePtr}
c.createRuntimeCall("hashmapBinaryGet", params, "")
return c.builder.CreateLoad(mapValueAlloca, ""), nil
} else {
return llvm.Value{}, errors.New("todo: map lookup key type: " + keyType.String())
}
default:
return llvm.Value{}, errors.New("todo: map lookup key type: " + keyType.String())
}
default:
panic("unknown lookup type: " + expr.String())
}
case *ssa.MakeClosure:
return c.parseMakeClosure(frame, expr)
case *ssa.MakeInterface:
val, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
return c.parseMakeInterface(val, expr.X.Type(), "")
case *ssa.MakeMap:
mapType := expr.Type().Underlying().(*types.Map)
llvmKeyType, err := c.getLLVMType(mapType.Key().Underlying())
if err != nil {
return llvm.Value{}, err
}
llvmValueType, err := c.getLLVMType(mapType.Elem().Underlying())
if err != nil {
return llvm.Value{}, err
}
keySize := c.targetData.TypeAllocSize(llvmKeyType)
valueSize := c.targetData.TypeAllocSize(llvmValueType)
llvmKeySize := llvm.ConstInt(llvm.Int8Type(), keySize, false)
llvmValueSize := llvm.ConstInt(llvm.Int8Type(), valueSize, false)
hashmap := c.createRuntimeCall("hashmapMake", []llvm.Value{llvmKeySize, llvmValueSize}, "")
return hashmap, nil
case *ssa.MakeSlice:
sliceLen, err := c.parseExpr(frame, expr.Len)
if err != nil {
return llvm.Value{}, nil
}
sliceCap, err := c.parseExpr(frame, expr.Cap)
if err != nil {
return llvm.Value{}, nil
}
sliceType := expr.Type().Underlying().(*types.Slice)
llvmElemType, err := c.getLLVMType(sliceType.Elem())
if err != nil {
return llvm.Value{}, nil
}
elemSize := c.targetData.TypeAllocSize(llvmElemType)
// Bounds checking.
if !frame.fn.IsNoBounds() {
c.createRuntimeCall("sliceBoundsCheckMake", []llvm.Value{sliceLen, sliceCap}, "")
}
// Allocate the backing array.
// TODO: escape analysis
elemSizeValue := llvm.ConstInt(c.uintptrType, elemSize, false)
sliceCapCast, err := c.parseConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap)
if err != nil {
return llvm.Value{}, err
}
sliceSize := c.builder.CreateBinOp(llvm.Mul, elemSizeValue, sliceCapCast, "makeslice.cap")
slicePtr := c.createRuntimeCall("alloc", []llvm.Value{sliceSize}, "makeslice.buf")
slicePtr = c.builder.CreateBitCast(slicePtr, llvm.PointerType(llvmElemType, 0), "makeslice.array")
if c.targetData.TypeAllocSize(sliceLen.Type()) > c.targetData.TypeAllocSize(c.lenType) {
sliceLen = c.builder.CreateTrunc(sliceLen, c.lenType, "")
sliceCap = c.builder.CreateTrunc(sliceCap, c.lenType, "")
}
// Create the slice.
slice := llvm.ConstStruct([]llvm.Value{
llvm.Undef(slicePtr.Type()),
llvm.Undef(c.lenType),
llvm.Undef(c.lenType),
}, false)
slice = c.builder.CreateInsertValue(slice, slicePtr, 0, "")
slice = c.builder.CreateInsertValue(slice, sliceLen, 1, "")
slice = c.builder.CreateInsertValue(slice, sliceCap, 2, "")
return slice, nil
case *ssa.Next:
rangeVal := expr.Iter.(*ssa.Range).X
llvmRangeVal, err := c.parseExpr(frame, rangeVal)
if err != nil {
return llvm.Value{}, err
}
it, err := c.parseExpr(frame, expr.Iter)
if err != nil {
return llvm.Value{}, err
}
if expr.IsString {
return c.createRuntimeCall("stringNext", []llvm.Value{llvmRangeVal, it}, "range.next"), nil
} else { // map
llvmKeyType, err := c.getLLVMType(rangeVal.Type().(*types.Map).Key())
if err != nil {
return llvm.Value{}, err
}
llvmValueType, err := c.getLLVMType(rangeVal.Type().(*types.Map).Elem())
if err != nil {
return llvm.Value{}, err
}
mapKeyAlloca := c.builder.CreateAlloca(llvmKeyType, "range.key")
mapKeyPtr := c.builder.CreateBitCast(mapKeyAlloca, c.i8ptrType, "range.keyptr")
mapValueAlloca := c.builder.CreateAlloca(llvmValueType, "range.value")
mapValuePtr := c.builder.CreateBitCast(mapValueAlloca, c.i8ptrType, "range.valueptr")
ok := c.createRuntimeCall("hashmapNext", []llvm.Value{llvmRangeVal, it, mapKeyPtr, mapValuePtr}, "range.next")
tuple := llvm.Undef(llvm.StructType([]llvm.Type{llvm.Int1Type(), llvmKeyType, llvmValueType}, false))
tuple = c.builder.CreateInsertValue(tuple, ok, 0, "")
tuple = c.builder.CreateInsertValue(tuple, c.builder.CreateLoad(mapKeyAlloca, ""), 1, "")
tuple = c.builder.CreateInsertValue(tuple, c.builder.CreateLoad(mapValueAlloca, ""), 2, "")
return tuple, nil
}
case *ssa.Phi:
t, err := c.getLLVMType(expr.Type())
if err != nil {
return llvm.Value{}, err
}
phi := c.builder.CreatePHI(t, "")
frame.phis = append(frame.phis, Phi{expr, phi})
return phi, nil
case *ssa.Range:
var iteratorType llvm.Type
switch typ := expr.X.Type().Underlying().(type) {
case *types.Basic: // string
iteratorType = c.mod.GetTypeByName("runtime.stringIterator")
case *types.Map:
iteratorType = c.mod.GetTypeByName("runtime.hashmapIterator")
default:
panic("unknown type in range: " + typ.String())
}
it := c.builder.CreateAlloca(iteratorType, "range.it")
zero, err := getZeroValue(iteratorType)
if err != nil {
return llvm.Value{}, nil
}
c.builder.CreateStore(zero, it)
return it, nil
case *ssa.Slice:
if expr.Max != nil {
return llvm.Value{}, errors.New("todo: full slice expressions (with max): " + expr.Type().String())
}
value, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
var low, high llvm.Value
if expr.Low == nil {
low = llvm.ConstInt(c.intType, 0, false)
} else {
low, err = c.parseExpr(frame, expr.Low)
if err != nil {
return llvm.Value{}, nil
}
}
if expr.High != nil {
high, err = c.parseExpr(frame, expr.High)
if err != nil {
return llvm.Value{}, nil
}
}
switch typ := expr.X.Type().Underlying().(type) {
case *types.Pointer: // pointer to array
// slice an array
length := typ.Elem().(*types.Array).Len()
llvmLen := llvm.ConstInt(c.lenType, uint64(length), false)
llvmLenInt := llvm.ConstInt(c.intType, uint64(length), false)
if high.IsNil() {
high = llvmLenInt
}
indices := []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
low,
}
slicePtr := c.builder.CreateGEP(value, indices, "slice.ptr")
sliceLen := c.builder.CreateSub(high, low, "slice.len")
sliceCap := c.builder.CreateSub(llvmLenInt, low, "slice.cap")
// This check is optimized away in most cases.
if !frame.fn.IsNoBounds() {
c.createRuntimeCall("sliceBoundsCheck", []llvm.Value{llvmLen, low, high}, "")
}
if c.targetData.TypeAllocSize(sliceLen.Type()) > c.targetData.TypeAllocSize(c.lenType) {
sliceLen = c.builder.CreateTrunc(sliceLen, c.lenType, "")
sliceCap = c.builder.CreateTrunc(sliceCap, c.lenType, "")
}
slice := llvm.ConstStruct([]llvm.Value{
llvm.Undef(slicePtr.Type()),
llvm.Undef(c.lenType),
llvm.Undef(c.lenType),
}, false)
slice = c.builder.CreateInsertValue(slice, slicePtr, 0, "")
slice = c.builder.CreateInsertValue(slice, sliceLen, 1, "")
slice = c.builder.CreateInsertValue(slice, sliceCap, 2, "")
return slice, nil
case *types.Slice:
// slice a slice
oldPtr := c.builder.CreateExtractValue(value, 0, "")
oldLen := c.builder.CreateExtractValue(value, 1, "")
oldCap := c.builder.CreateExtractValue(value, 2, "")
if high.IsNil() {
high = oldLen
}
if !frame.fn.IsNoBounds() {
c.createRuntimeCall("sliceBoundsCheck", []llvm.Value{oldLen, low, high}, "")
}
if c.targetData.TypeAllocSize(low.Type()) > c.targetData.TypeAllocSize(c.lenType) {
low = c.builder.CreateTrunc(low, c.lenType, "")
}
if c.targetData.TypeAllocSize(high.Type()) > c.targetData.TypeAllocSize(c.lenType) {
high = c.builder.CreateTrunc(high, c.lenType, "")
}
newPtr := c.builder.CreateGEP(oldPtr, []llvm.Value{low}, "")
newLen := c.builder.CreateSub(high, low, "")
newCap := c.builder.CreateSub(oldCap, low, "")
slice := llvm.ConstStruct([]llvm.Value{
llvm.Undef(newPtr.Type()),
llvm.Undef(c.lenType),
llvm.Undef(c.lenType),
}, false)
slice = c.builder.CreateInsertValue(slice, newPtr, 0, "")
slice = c.builder.CreateInsertValue(slice, newLen, 1, "")
slice = c.builder.CreateInsertValue(slice, newCap, 2, "")
return slice, nil
case *types.Basic:
if typ.Kind() != types.String {
return llvm.Value{}, errors.New("unknown slice type: " + typ.String())
}
// slice a string
oldPtr := c.builder.CreateExtractValue(value, 0, "")
oldLen := c.builder.CreateExtractValue(value, 1, "")
if high.IsNil() {
high = oldLen
}
if !frame.fn.IsNoBounds() {
c.createRuntimeCall("sliceBoundsCheck", []llvm.Value{oldLen, low, high}, "")
}
newPtr := c.builder.CreateGEP(oldPtr, []llvm.Value{low}, "")
newLen := c.builder.CreateSub(high, low, "")
str, err := getZeroValue(c.mod.GetTypeByName("runtime._string"))
if err != nil {
return llvm.Value{}, err
}
str = c.builder.CreateInsertValue(str, newPtr, 0, "")
str = c.builder.CreateInsertValue(str, newLen, 1, "")
return str, nil
default:
return llvm.Value{}, errors.New("unknown slice type: " + typ.String())
}
case *ssa.TypeAssert:
itf, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
assertedType, err := c.getLLVMType(expr.AssertedType)
if err != nil {
return llvm.Value{}, err
}
valueNil, err := getZeroValue(assertedType)
if err != nil {
return llvm.Value{}, err
}
actualTypeNum := c.builder.CreateExtractValue(itf, 0, "interface.type")
commaOk := llvm.Value{}
if itf, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type.
// This is slightly non-trivial: at runtime the list of methods
// needs to be checked to see whether it implements the interface.
// At the same time, the interface value itself is unchanged.
itfTypeNum := c.ir.InterfaceNum(itf)
itfTypeNumValue := llvm.ConstInt(llvm.Int16Type(), uint64(itfTypeNum), false)
commaOk = c.createRuntimeCall("interfaceImplements", []llvm.Value{actualTypeNum, itfTypeNumValue}, "")
} else {
// Type assert on concrete type.
// This is easy: just compare the type number.
assertedTypeNum, typeExists := c.ir.TypeNum(expr.AssertedType)
if !typeExists {
// Static analysis has determined this type assert will never apply.
// Using undef here so that LLVM knows we'll never get here and
// can optimize accordingly.
undef := llvm.Undef(assertedType)
commaOk := llvm.ConstInt(llvm.Int1Type(), 0, false)
if expr.CommaOk {
return llvm.ConstStruct([]llvm.Value{undef, commaOk}, false), nil
} else {
c.createRuntimeCall("interfaceTypeAssert", []llvm.Value{commaOk}, "")
return undef, nil
}
}
if assertedTypeNum >= 1<<16 {
return llvm.Value{}, errors.New("interface typecodes do not fit in a 16-bit integer")
}
assertedTypeNumValue := llvm.ConstInt(llvm.Int16Type(), uint64(assertedTypeNum), false)
commaOk = c.builder.CreateICmp(llvm.IntEQ, assertedTypeNumValue, actualTypeNum, "")
}
// Add 2 new basic blocks (that should get optimized away): one for the
// 'ok' case and one for all instructions following this type assert.
// This is necessary because we need to insert the casted value or the
// nil value based on whether the assert was successful. Casting before
// this check tells LLVM that it can use this value and may
// speculatively dereference pointers before the check. This can lead to
// a miscompilation resulting in a segfault at runtime.
// Additionally, this is even required by the Go spec: a failed
// typeassert should return a zero value, not an incorrectly casted
// value.
prevBlock := c.builder.GetInsertBlock()
okBlock := c.ctx.AddBasicBlock(frame.fn.LLVMFn, "typeassert.ok")
nextBlock := c.ctx.AddBasicBlock(frame.fn.LLVMFn, "typeassert.next")
frame.blocks[frame.currentBlock] = nextBlock // adjust outgoing block for phi nodes
c.builder.CreateCondBr(commaOk, okBlock, nextBlock)
// Retrieve the value from the interface if the type assert was
// successful.
c.builder.SetInsertPointAtEnd(okBlock)
var valueOk llvm.Value
if _, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type. Easy: just return the same
// interface value.
valueOk = itf
} else {
// Type assert on concrete type. Extract the underlying type from
// the interface (but only after checking it matches).
valuePtr := c.builder.CreateExtractValue(itf, 1, "typeassert.value.ptr")
if c.targetData.TypeAllocSize(assertedType) > c.targetData.TypeAllocSize(c.i8ptrType) {
// Value was stored in an allocated buffer, load it from there.
valuePtrCast := c.builder.CreateBitCast(valuePtr, llvm.PointerType(assertedType, 0), "")
valueOk = c.builder.CreateLoad(valuePtrCast, "typeassert.value.ok")
} else {
// Value was stored directly in the interface.
switch assertedType.TypeKind() {
case llvm.IntegerTypeKind:
valueOk = c.builder.CreatePtrToInt(valuePtr, assertedType, "typeassert.value.ok")
case llvm.PointerTypeKind:
valueOk = c.builder.CreateBitCast(valuePtr, assertedType, "typeassert.value.ok")
case llvm.StructTypeKind:
// A bitcast would be useful here, but bitcast doesn't allow
// aggregate types. So we'll bitcast it using an alloca.
// Hopefully this will get optimized away.
mem := c.builder.CreateAlloca(c.i8ptrType, "")
c.builder.CreateStore(valuePtr, mem)
memStructPtr := c.builder.CreateBitCast(mem, llvm.PointerType(assertedType, 0), "")
valueOk = c.builder.CreateLoad(memStructPtr, "typeassert.value.ok")
default:
return llvm.Value{}, errors.New("todo: typeassert: bitcast small types")
}
}
}
c.builder.CreateBr(nextBlock)
// Continue after the if statement.
c.builder.SetInsertPointAtEnd(nextBlock)
phi := c.builder.CreatePHI(assertedType, "typeassert.value")
phi.AddIncoming([]llvm.Value{valueNil, valueOk}, []llvm.BasicBlock{prevBlock, okBlock})
if expr.CommaOk {
tuple := llvm.ConstStruct([]llvm.Value{llvm.Undef(assertedType), llvm.Undef(llvm.Int1Type())}, false) // create empty tuple
tuple = c.builder.CreateInsertValue(tuple, phi, 0, "") // insert value
tuple = c.builder.CreateInsertValue(tuple, commaOk, 1, "") // insert 'comma ok' boolean
return tuple, nil
} else {
// This is kind of dirty as the branch above becomes mostly useless,
// but hopefully this gets optimized away.
c.createRuntimeCall("interfaceTypeAssert", []llvm.Value{commaOk}, "")
return phi, nil
}
case *ssa.UnOp:
return c.parseUnOp(frame, expr)
default:
return llvm.Value{}, errors.New("todo: unknown expression: " + expr.String())
}
}
func (c *Compiler) parseBinOp(frame *Frame, binop *ssa.BinOp) (llvm.Value, error) {
x, err := c.parseExpr(frame, binop.X)
if err != nil {
return llvm.Value{}, err
}
y, err := c.parseExpr(frame, binop.Y)
if err != nil {
return llvm.Value{}, err
}
switch typ := binop.X.Type().Underlying().(type) {
case *types.Basic:
if typ.Info()&types.IsInteger != 0 {
// Operations on integers
signed := typ.Info()&types.IsUnsigned == 0
switch binop.Op {
case token.ADD: // +
return c.builder.CreateAdd(x, y, ""), nil
case token.SUB: // -
return c.builder.CreateSub(x, y, ""), nil
case token.MUL: // *
return c.builder.CreateMul(x, y, ""), nil
case token.QUO: // /
if signed {
return c.builder.CreateSDiv(x, y, ""), nil
} else {
return c.builder.CreateUDiv(x, y, ""), nil
}
case token.REM: // %
if signed {
return c.builder.CreateSRem(x, y, ""), nil
} else {
return c.builder.CreateURem(x, y, ""), nil
}
case token.AND: // &
return c.builder.CreateAnd(x, y, ""), nil
case token.OR: // |
return c.builder.CreateOr(x, y, ""), nil
case token.XOR: // ^
return c.builder.CreateXor(x, y, ""), nil
case token.SHL, token.SHR:
sizeX := c.targetData.TypeAllocSize(x.Type())
sizeY := c.targetData.TypeAllocSize(y.Type())
if sizeX > sizeY {
// x and y must have equal sizes, make Y bigger in this case.
// y is unsigned, this has been checked by the Go type checker.
y = c.builder.CreateZExt(y, x.Type(), "")
} else if sizeX < sizeY {
// What about shifting more than the integer width?
// I'm not entirely sure what the Go spec is on that, but as
// Intel CPUs have undefined behavior when shifting more
// than the integer width I'm assuming it is also undefined
// in Go.
y = c.builder.CreateTrunc(y, x.Type(), "")
}
switch binop.Op {
case token.SHL: // <<
return c.builder.CreateShl(x, y, ""), nil
case token.SHR: // >>
if signed {
return c.builder.CreateAShr(x, y, ""), nil
} else {
return c.builder.CreateLShr(x, y, ""), nil
}
default:
panic("unreachable")
}
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
case token.AND_NOT: // &^
// Go specific. Calculate "and not" with x & (~y)
inv := c.builder.CreateNot(y, "") // ~y
return c.builder.CreateAnd(x, inv, ""), nil
case token.LSS: // <
if signed {
return c.builder.CreateICmp(llvm.IntSLT, x, y, ""), nil
} else {
return c.builder.CreateICmp(llvm.IntULT, x, y, ""), nil
}
case token.LEQ: // <=
if signed {
return c.builder.CreateICmp(llvm.IntSLE, x, y, ""), nil
} else {
return c.builder.CreateICmp(llvm.IntULE, x, y, ""), nil
}
case token.GTR: // >
if signed {
return c.builder.CreateICmp(llvm.IntSGT, x, y, ""), nil
} else {
return c.builder.CreateICmp(llvm.IntUGT, x, y, ""), nil
}
case token.GEQ: // >=
if signed {
return c.builder.CreateICmp(llvm.IntSGE, x, y, ""), nil
} else {
return c.builder.CreateICmp(llvm.IntUGE, x, y, ""), nil
}
default:
return llvm.Value{}, errors.New("todo: binop on integer: " + binop.Op.String())
}
} else if typ.Info()&types.IsFloat != 0 {
// Operations on floats
switch binop.Op {
case token.ADD:
return c.builder.CreateFAdd(x, y, ""), nil
case token.SUB: // -
return c.builder.CreateFSub(x, y, ""), nil
case token.MUL: // *
return c.builder.CreateFMul(x, y, ""), nil
case token.QUO: // /
return c.builder.CreateFDiv(x, y, ""), nil
case token.REM: // %
return c.builder.CreateFRem(x, y, ""), nil
case token.EQL: // ==
return c.builder.CreateFCmp(llvm.FloatOEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateFCmp(llvm.FloatONE, x, y, ""), nil
case token.LSS: // <
return c.builder.CreateFCmp(llvm.FloatOLT, x, y, ""), nil
case token.LEQ: // <=
return c.builder.CreateFCmp(llvm.FloatOLE, x, y, ""), nil
case token.GTR: // >
return c.builder.CreateFCmp(llvm.FloatOGT, x, y, ""), nil
case token.GEQ: // >=
return c.builder.CreateFCmp(llvm.FloatOGE, x, y, ""), nil
default:
return llvm.Value{}, errors.New("todo: binop on float: " + binop.Op.String())
}
} else if typ.Kind() == types.UnsafePointer {
// Operations on pointers
switch binop.Op {
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, errors.New("todo: binop on pointer: " + binop.Op.String())
}
} else if typ.Info()&types.IsString != 0 {
// Operations on strings
switch binop.Op {
case token.ADD:
return c.createRuntimeCall("stringConcat", []llvm.Value{x, y}, ""), nil
case token.EQL, token.NEQ: // ==, !=
result := c.createRuntimeCall("stringEqual", []llvm.Value{x, y}, "")
if binop.Op == token.NEQ {
result = c.builder.CreateNot(result, "")
}
return result, nil
default:
return llvm.Value{}, errors.New("todo: binop on string: " + binop.Op.String())
}
} else {
return llvm.Value{}, errors.New("todo: unknown basic type in binop: " + typ.String())
}
case *types.Signature:
if c.ir.SignatureNeedsContext(typ) {
// This is a closure, not a function pointer. Get the underlying
// function pointer.
// This is safe: function pointers are generally not comparable
// against each other, only against nil. So one or both has to be
// nil, so we can ignore the contents of the closure.
x = c.builder.CreateExtractValue(x, 1, "")
y = c.builder.CreateExtractValue(y, 1, "")
}
switch binop.Op {
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, errors.New("binop on signature: " + binop.Op.String())
}
case *types.Interface:
switch binop.Op {
case token.EQL, token.NEQ: // ==, !=
result := c.createRuntimeCall("interfaceEqual", []llvm.Value{x, y}, "")
if binop.Op == token.NEQ {
result = c.builder.CreateNot(result, "")
}
return result, nil
default:
return llvm.Value{}, errors.New("binop on interface: " + binop.Op.String())
}
case *types.Pointer:
switch binop.Op {
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, errors.New("todo: binop on pointer: " + binop.Op.String())
}
default:
return llvm.Value{}, errors.New("unknown binop type: " + binop.X.Type().String())
}
}
func (c *Compiler) parseConst(prefix string, expr *ssa.Const) (llvm.Value, error) {
switch typ := expr.Type().Underlying().(type) {
case *types.Basic:
llvmType, err := c.getLLVMType(typ)
if err != nil {
return llvm.Value{}, err
}
if typ.Info()&types.IsBoolean != 0 {
b := constant.BoolVal(expr.Value)
n := uint64(0)
if b {
n = 1
}
return llvm.ConstInt(llvmType, n, false), nil
} else if typ.Info()&types.IsString != 0 {
str := constant.StringVal(expr.Value)
strLen := llvm.ConstInt(c.lenType, uint64(len(str)), false)
objname := prefix + "$string"
global := llvm.AddGlobal(c.mod, llvm.ArrayType(llvm.Int8Type(), len(str)), objname)
global.SetInitializer(c.ctx.ConstString(str, false))
global.SetLinkage(llvm.InternalLinkage)
global.SetGlobalConstant(true)
global.SetUnnamedAddr(true)
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
strPtr := c.builder.CreateInBoundsGEP(global, []llvm.Value{zero, zero}, "")
strObj := llvm.ConstNamedStruct(c.mod.GetTypeByName("runtime._string"), []llvm.Value{strPtr, strLen})
return strObj, nil
} else if typ.Kind() == types.UnsafePointer {
if !expr.IsNil() {
value, _ := constant.Uint64Val(expr.Value)
return llvm.ConstIntToPtr(llvm.ConstInt(c.uintptrType, value, false), c.i8ptrType), nil
}
return llvm.ConstNull(c.i8ptrType), nil
} else if typ.Info()&types.IsUnsigned != 0 {
n, _ := constant.Uint64Val(expr.Value)
return llvm.ConstInt(llvmType, n, false), nil
} else if typ.Info()&types.IsInteger != 0 { // signed
n, _ := constant.Int64Val(expr.Value)
return llvm.ConstInt(llvmType, uint64(n), true), nil
} else if typ.Info()&types.IsFloat != 0 {
n, _ := constant.Float64Val(expr.Value)
return llvm.ConstFloat(llvmType, n), nil
} else {
return llvm.Value{}, errors.New("todo: unknown constant: " + expr.String())
}
case *types.Signature:
if expr.Value != nil {
return llvm.Value{}, errors.New("non-nil signature constant")
}
sig, err := c.getLLVMType(expr.Type())
if err != nil {
return llvm.Value{}, err
}
return getZeroValue(sig)
case *types.Interface:
if expr.Value != nil {
return llvm.Value{}, errors.New("non-nil interface constant")
}
// Create a generic nil interface with no dynamic type (typecode=0).
fields := []llvm.Value{
llvm.ConstInt(llvm.Int16Type(), 0, false),
llvm.ConstPointerNull(c.i8ptrType),
}
itf := llvm.ConstNamedStruct(c.mod.GetTypeByName("runtime._interface"), fields)
return itf, nil
case *types.Pointer:
if expr.Value != nil {
return llvm.Value{}, errors.New("non-nil pointer constant")
}
llvmType, err := c.getLLVMType(typ)
if err != nil {
return llvm.Value{}, err
}
return llvm.ConstPointerNull(llvmType), nil
case *types.Slice:
if expr.Value != nil {
return llvm.Value{}, errors.New("non-nil slice constant")
}
elemType, err := c.getLLVMType(typ.Elem())
if err != nil {
return llvm.Value{}, err
}
llvmPtr := llvm.ConstPointerNull(llvm.PointerType(elemType, 0))
llvmLen := llvm.ConstInt(c.lenType, 0, false)
slice := llvm.ConstStruct([]llvm.Value{
llvmPtr, // backing array
llvmLen, // len
llvmLen, // cap
}, false)
return slice, nil
default:
return llvm.Value{}, errors.New("todo: unknown constant: " + expr.String())
}
}
func (c *Compiler) parseConvert(typeFrom, typeTo types.Type, value llvm.Value) (llvm.Value, error) {
llvmTypeFrom := value.Type()
llvmTypeTo, err := c.getLLVMType(typeTo)
if err != nil {
return llvm.Value{}, err
}
// Conversion between unsafe.Pointer and uintptr.
isPtrFrom := isPointer(typeFrom.Underlying())
isPtrTo := isPointer(typeTo.Underlying())
if isPtrFrom && !isPtrTo {
return c.builder.CreatePtrToInt(value, llvmTypeTo, ""), nil
} else if !isPtrFrom && isPtrTo {
return c.builder.CreateIntToPtr(value, llvmTypeTo, ""), nil
}
// Conversion between pointers and unsafe.Pointer.
if isPtrFrom && isPtrTo {
return c.builder.CreateBitCast(value, llvmTypeTo, ""), nil
}
switch typeTo := typeTo.Underlying().(type) {
case *types.Basic:
sizeFrom := c.targetData.TypeAllocSize(llvmTypeFrom)
if typeTo.Info()&types.IsString != 0 {
switch typeFrom := typeFrom.Underlying().(type) {
case *types.Basic:
// Assume a Unicode code point, as that is the only possible
// value here.
// Cast to an i32 value as expected by
// runtime.stringFromUnicode.
if sizeFrom > 4 {
value = c.builder.CreateTrunc(value, llvm.Int32Type(), "")
} else if sizeFrom < 4 && typeTo.Info()&types.IsUnsigned != 0 {
value = c.builder.CreateZExt(value, llvm.Int32Type(), "")
} else if sizeFrom < 4 {
value = c.builder.CreateSExt(value, llvm.Int32Type(), "")
}
return c.createRuntimeCall("stringFromUnicode", []llvm.Value{value}, ""), nil
case *types.Slice:
switch typeFrom.Elem().(*types.Basic).Kind() {
case types.Byte:
return c.createRuntimeCall("stringFromBytes", []llvm.Value{value}, ""), nil
default:
return llvm.Value{}, errors.New("todo: convert to string: " + typeFrom.String())
}
default:
return llvm.Value{}, errors.New("todo: convert to string: " + typeFrom.String())
}
}
typeFrom := typeFrom.Underlying().(*types.Basic)
sizeTo := c.targetData.TypeAllocSize(llvmTypeTo)
if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsInteger != 0 {
// Conversion between two integers.
if sizeFrom > sizeTo {
return c.builder.CreateTrunc(value, llvmTypeTo, ""), nil
} else if typeTo.Info()&types.IsUnsigned != 0 { // if unsigned
return c.builder.CreateZExt(value, llvmTypeTo, ""), nil
} else { // if signed
return c.builder.CreateSExt(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsFloat != 0 {
// Conversion between two floats.
if sizeFrom > sizeTo {
return c.builder.CreateFPTrunc(value, llvmTypeTo, ""), nil
} else if sizeFrom < sizeTo {
return c.builder.CreateFPExt(value, llvmTypeTo, ""), nil
} else {
return value, nil
}
}
if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsInteger != 0 {
// Conversion from float to int.
if typeTo.Info()&types.IsUnsigned != 0 { // to signed int
return c.builder.CreateFPToSI(value, llvmTypeTo, ""), nil
} else { // to unsigned int
return c.builder.CreateFPToUI(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsFloat != 0 {
// Conversion from int to float.
if typeFrom.Info()&types.IsUnsigned != 0 { // from signed int
return c.builder.CreateSIToFP(value, llvmTypeTo, ""), nil
} else { // from unsigned int
return c.builder.CreateUIToFP(value, llvmTypeTo, ""), nil
}
}
return llvm.Value{}, errors.New("todo: convert: basic non-integer type: " + typeFrom.String() + " -> " + typeTo.String())
case *types.Slice:
if basic, ok := typeFrom.(*types.Basic); !ok || basic.Kind() != types.String {
panic("can only convert from a string to a slice")
}
elemType := typeTo.Elem().Underlying().(*types.Basic) // must be byte or rune
switch elemType.Kind() {
case types.Byte:
return c.createRuntimeCall("stringToBytes", []llvm.Value{value}, ""), nil
default:
return llvm.Value{}, errors.New("todo: convert from string: " + elemType.String())
}
default:
return llvm.Value{}, errors.New("todo: convert " + typeTo.String() + " <- " + typeFrom.String())
}
}
func (c *Compiler) parseMakeClosure(frame *Frame, expr *ssa.MakeClosure) (llvm.Value, error) {
if len(expr.Bindings) == 0 {
panic("unexpected: MakeClosure without bound variables")
}
f := c.ir.GetFunction(expr.Fn.(*ssa.Function))
if !c.ir.FunctionNeedsContext(f) {
// Maybe AnalyseFunctionPointers didn't run?
panic("MakeClosure on function signature without context")
}
// Collect all bound variables.
boundVars := make([]llvm.Value, 0, len(expr.Bindings))
boundVarTypes := make([]llvm.Type, 0, len(expr.Bindings))
for _, binding := range expr.Bindings {
// The context stores the bound variables.
llvmBoundVar, err := c.parseExpr(frame, binding)
if err != nil {
return llvm.Value{}, err
}
boundVars = append(boundVars, llvmBoundVar)
boundVarTypes = append(boundVarTypes, llvmBoundVar.Type())
}
contextType := llvm.StructType(boundVarTypes, false)
// Allocate memory for the context.
contextAlloc := llvm.Value{}
contextHeapAlloc := llvm.Value{}
if c.targetData.TypeAllocSize(contextType) <= c.targetData.TypeAllocSize(c.i8ptrType) {
// Context fits in a pointer - e.g. when it is a pointer. Store it
// directly in the stack after a convert.
// Because contextType is a struct and we have to cast it to a *i8,
// store it in an alloca first for bitcasting (store+bitcast+load).
contextAlloc = c.builder.CreateAlloca(contextType, "")
} else {
// Context is bigger than a pointer, so allocate it on the heap.
size := c.targetData.TypeAllocSize(contextType)
sizeValue := llvm.ConstInt(c.uintptrType, size, false)
contextHeapAlloc = c.createRuntimeCall("alloc", []llvm.Value{sizeValue}, "")
contextAlloc = c.builder.CreateBitCast(contextHeapAlloc, llvm.PointerType(contextType, 0), "")
}
// Store all bound variables in the alloca or heap pointer.
for i, boundVar := range boundVars {
indices := []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
llvm.ConstInt(llvm.Int32Type(), uint64(i), false),
}
gep := c.builder.CreateInBoundsGEP(contextAlloc, indices, "")
c.builder.CreateStore(boundVar, gep)
}
context := llvm.Value{}
if c.targetData.TypeAllocSize(contextType) <= c.targetData.TypeAllocSize(c.i8ptrType) {
// Load value (as *i8) from the alloca.
contextAlloc = c.builder.CreateBitCast(contextAlloc, llvm.PointerType(c.i8ptrType, 0), "")
context = c.builder.CreateLoad(contextAlloc, "")
} else {
// Get the original heap allocation pointer, which already is an
// *i8.
context = contextHeapAlloc
}
// Get the function signature type, which is a closure type.
// A closure is a tuple of {context, function pointer}.
typ, err := c.getLLVMType(f.Signature)
if err != nil {
return llvm.Value{}, err
}
// Create the closure, which is a struct: {context, function pointer}.
closure, err := getZeroValue(typ)
if err != nil {
return llvm.Value{}, err
}
closure = c.builder.CreateInsertValue(closure, f.LLVMFn, 1, "")
closure = c.builder.CreateInsertValue(closure, context, 0, "")
return closure, nil
}
func (c *Compiler) parseMakeInterface(val llvm.Value, typ types.Type, global string) (llvm.Value, error) {
var itfValue llvm.Value
size := c.targetData.TypeAllocSize(val.Type())
if size > c.targetData.TypeAllocSize(c.i8ptrType) {
if global != "" {
// Allocate in a global variable.
global := llvm.AddGlobal(c.mod, val.Type(), global+"$itfvalue")
global.SetInitializer(val)
global.SetLinkage(llvm.InternalLinkage)
global.SetGlobalConstant(true)
zero := llvm.ConstInt(llvm.Int32Type(), 0, false)
itfValueRaw := llvm.ConstInBoundsGEP(global, []llvm.Value{zero, zero})
itfValue = llvm.ConstBitCast(itfValueRaw, c.i8ptrType)
} else {
// Allocate on the heap and put a pointer in the interface.
// TODO: escape analysis.
sizeValue := llvm.ConstInt(c.uintptrType, size, false)
itfValue = c.createRuntimeCall("alloc", []llvm.Value{sizeValue}, "")
itfValueCast := c.builder.CreateBitCast(itfValue, llvm.PointerType(val.Type(), 0), "")
c.builder.CreateStore(val, itfValueCast)
}
} else {
// Directly place the value in the interface.
switch val.Type().TypeKind() {
case llvm.IntegerTypeKind:
itfValue = c.builder.CreateIntToPtr(val, c.i8ptrType, "")
case llvm.PointerTypeKind:
itfValue = c.builder.CreateBitCast(val, c.i8ptrType, "")
case llvm.StructTypeKind:
// A bitcast would be useful here, but bitcast doesn't allow
// aggregate types. So we'll bitcast it using an alloca.
// Hopefully this will get optimized away.
mem := c.builder.CreateAlloca(c.i8ptrType, "")
memStructPtr := c.builder.CreateBitCast(mem, llvm.PointerType(val.Type(), 0), "")
c.builder.CreateStore(val, memStructPtr)
itfValue = c.builder.CreateLoad(mem, "")
default:
return llvm.Value{}, errors.New("todo: makeinterface: cast small type to i8*")
}
}
itfTypeNum, _ := c.ir.TypeNum(typ)
if itfTypeNum >= 1<<16 {
return llvm.Value{}, errors.New("interface typecodes do not fit in a 16-bit integer")
}
itf := llvm.ConstNamedStruct(c.mod.GetTypeByName("runtime._interface"), []llvm.Value{llvm.ConstInt(llvm.Int16Type(), uint64(itfTypeNum), false), llvm.Undef(c.i8ptrType)})
itf = c.builder.CreateInsertValue(itf, itfValue, 1, "")
return itf, nil
}
func (c *Compiler) parseUnOp(frame *Frame, unop *ssa.UnOp) (llvm.Value, error) {
x, err := c.parseExpr(frame, unop.X)
if err != nil {
return llvm.Value{}, err
}
switch unop.Op {
case token.NOT: // !x
return c.builder.CreateNot(x, ""), nil
case token.SUB: // -x
if typ, ok := unop.X.Type().Underlying().(*types.Basic); ok {
if typ.Info()&types.IsInteger != 0 {
return c.builder.CreateSub(llvm.ConstInt(x.Type(), 0, false), x, ""), nil
} else if typ.Info()&types.IsFloat != 0 {
return c.builder.CreateFSub(llvm.ConstFloat(x.Type(), 0.0), x, ""), nil
} else {
return llvm.Value{}, errors.New("todo: unknown basic type for negate: " + typ.String())
}
} else {
return llvm.Value{}, errors.New("todo: unknown type for negate: " + unop.X.Type().Underlying().String())
}
case token.MUL: // *x, dereference pointer
valType := unop.X.Type().(*types.Pointer).Elem()
load := c.builder.CreateLoad(x, "")
if c.ir.IsVolatile(valType) {
// Volatile load, for memory-mapped registers.
load.SetVolatile(true)
}
return load, nil
case token.XOR: // ^x, toggle all bits in integer
return c.builder.CreateXor(x, llvm.ConstInt(x.Type(), ^uint64(0), false), ""), nil
default:
return llvm.Value{}, errors.New("todo: unknown unop")
}
}
// IR returns the whole IR as a human-readable string.
func (c *Compiler) IR() string {
return c.mod.String()
}
func (c *Compiler) Verify() error {
return llvm.VerifyModule(c.mod, 0)
}
func (c *Compiler) ApplyFunctionSections() {
// Put every function in a separate section. This makes it possible for the
// linker to remove dead code (-ffunction-sections).
llvmFn := c.mod.FirstFunction()
for !llvmFn.IsNil() {
if !llvmFn.IsDeclaration() {
name := llvmFn.Name()
llvmFn.SetSection(".text." + name)
}
llvmFn = llvm.NextFunction(llvmFn)
}
}
// Turn all global constants into global variables. This works around a
// limitation on Harvard architectures (e.g. AVR), where constant and
// non-constant pointers point to a different address space.
func (c *Compiler) NonConstGlobals() {
global := c.mod.FirstGlobal()
for !global.IsNil() {
global.SetGlobalConstant(false)
global = llvm.NextGlobal(global)
}
}
// Emit object file (.o).
func (c *Compiler) EmitObject(path string) error {
llvmBuf, err := c.machine.EmitToMemoryBuffer(c.mod, llvm.ObjectFile)
if err != nil {
return err
}
return c.writeFile(llvmBuf.Bytes(), path)
}
// Emit LLVM bitcode file (.bc).
func (c *Compiler) EmitBitcode(path string) error {
data := llvm.WriteBitcodeToMemoryBuffer(c.mod).Bytes()
return c.writeFile(data, path)
}
// Emit LLVM IR source file (.ll).
func (c *Compiler) EmitText(path string) error {
data := []byte(c.mod.String())
return c.writeFile(data, path)
}
// Write the data to the file specified by path.
func (c *Compiler) writeFile(data []byte, path string) error {
// Write output to file
f, err := os.OpenFile(path, os.O_RDWR|os.O_CREATE|os.O_TRUNC, 0666)
if err != nil {
return err
}
_, err = f.Write(data)
if err != nil {
return err
}
return f.Close()
}