tinygo/compiler/interface.go
Ayke van Laethem fab38a0749 compiler: use Clang data layout for complex numbers
Match data layout of complex numbers to that of Clang, for better
interoperability. This makes alignment of complex numbes the same as the
individual elements (real and imaginary), as is required by the C spec
and implemented in Clang, but unlike the gc compler. The Go language
specification is silent on this matter.

> Each complex type has the same object representation and alignment
> requirements as an array of two elements of the corresponding real
> type (float for float complex, double for double complex, long double
> for long double complex). The first element of the array holds the
> real part, and the second element of the array holds the imaginary
> component.

Source: https://en.cppreference.com/w/c/language/arithmetic_types
2019-02-18 17:17:56 +01:00

539 строки
21 КиБ
Go

package compiler
// This file transforms interface-related instructions (*ssa.MakeInterface,
// *ssa.TypeAssert, calls on interface types) to an intermediate IR form, to be
// lowered to the final form by the interface lowering pass. See
// interface-lowering.go for more details.
import (
"go/token"
"go/types"
"strconv"
"strings"
"github.com/tinygo-org/tinygo/ir"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// parseMakeInterface emits the LLVM IR for the *ssa.MakeInterface instruction.
// It tries to put the type in the interface value, but if that's not possible,
// it will do an allocation of the right size and put that in the interface
// value field.
//
// An interface value is a {typecode, value} tuple, or {i16, i8*} to be exact.
func (c *Compiler) parseMakeInterface(val llvm.Value, typ types.Type, global string, pos token.Pos) (llvm.Value, error) {
var itfValue llvm.Value
size := c.targetData.TypeAllocSize(val.Type())
if size > c.targetData.TypeAllocSize(c.i8ptrType) {
if global != "" {
// Allocate in a global variable.
global := llvm.AddGlobal(c.mod, val.Type(), global+"$itfvalue")
global.SetInitializer(val)
global.SetLinkage(llvm.InternalLinkage)
global.SetGlobalConstant(true)
zero := llvm.ConstInt(c.ctx.Int32Type(), 0, false)
itfValueRaw := llvm.ConstInBoundsGEP(global, []llvm.Value{zero, zero})
itfValue = llvm.ConstBitCast(itfValueRaw, c.i8ptrType)
} else {
// Allocate on the heap and put a pointer in the interface.
// TODO: escape analysis.
sizeValue := llvm.ConstInt(c.uintptrType, size, false)
alloc := c.createRuntimeCall("alloc", []llvm.Value{sizeValue}, "makeinterface.alloc")
itfValueCast := c.builder.CreateBitCast(alloc, llvm.PointerType(val.Type(), 0), "makeinterface.cast.value")
c.builder.CreateStore(val, itfValueCast)
itfValue = c.builder.CreateBitCast(itfValueCast, c.i8ptrType, "makeinterface.cast.i8ptr")
}
} else if size == 0 {
itfValue = llvm.ConstPointerNull(c.i8ptrType)
} else {
// Directly place the value in the interface.
switch val.Type().TypeKind() {
case llvm.IntegerTypeKind:
itfValue = c.builder.CreateIntToPtr(val, c.i8ptrType, "makeinterface.cast.int")
case llvm.PointerTypeKind:
itfValue = c.builder.CreateBitCast(val, c.i8ptrType, "makeinterface.cast.ptr")
case llvm.StructTypeKind, llvm.FloatTypeKind, llvm.DoubleTypeKind:
// A bitcast would be useful here, but bitcast doesn't allow
// aggregate types. So we'll bitcast it using an alloca.
// Hopefully this will get optimized away.
mem := c.builder.CreateAlloca(c.i8ptrType, "makeinterface.cast.struct")
memStructPtr := c.builder.CreateBitCast(mem, llvm.PointerType(val.Type(), 0), "makeinterface.cast.struct.cast")
c.builder.CreateStore(val, memStructPtr)
itfValue = c.builder.CreateLoad(mem, "makeinterface.cast.load")
default:
return llvm.Value{}, c.makeError(pos, "todo: makeinterface: cast small type to i8*")
}
}
itfTypeCodeGlobal := c.getTypeCode(typ)
itfMethodSetGlobal, err := c.getTypeMethodSet(typ)
if err != nil {
return llvm.Value{}, nil
}
itfTypeCode := c.createRuntimeCall("makeInterface", []llvm.Value{itfTypeCodeGlobal, itfMethodSetGlobal}, "makeinterface.typecode")
itf := llvm.Undef(c.mod.GetTypeByName("runtime._interface"))
itf = c.builder.CreateInsertValue(itf, itfTypeCode, 0, "")
itf = c.builder.CreateInsertValue(itf, itfValue, 1, "")
return itf, nil
}
// getTypeCode returns a reference to a type code.
// It returns a pointer to an external global which should be replaced with the
// real type in the interface lowering pass.
func (c *Compiler) getTypeCode(typ types.Type) llvm.Value {
globalName := "type:" + getTypeCodeName(typ)
global := c.mod.NamedGlobal(globalName)
if global.IsNil() {
global = llvm.AddGlobal(c.mod, c.ctx.Int8Type(), globalName)
global.SetGlobalConstant(true)
}
return global
}
// getTypeCodeName returns a name for this type that can be used in the
// interface lowering pass to assign type codes as expected by the reflect
// package. See getTypeCodeNum.
func getTypeCodeName(t types.Type) string {
name := ""
if named, ok := t.(*types.Named); ok {
name = "~" + named.String() + ":"
t = t.Underlying()
}
switch t := t.(type) {
case *types.Array:
return "array:" + name + strconv.FormatInt(t.Len(), 10) + ":" + getTypeCodeName(t.Elem())
case *types.Basic:
var kind string
switch t.Kind() {
case types.Bool:
kind = "bool"
case types.Int:
kind = "int"
case types.Int8:
kind = "int8"
case types.Int16:
kind = "int16"
case types.Int32:
kind = "int32"
case types.Int64:
kind = "int64"
case types.Uint:
kind = "uint"
case types.Uint8:
kind = "uint8"
case types.Uint16:
kind = "uint16"
case types.Uint32:
kind = "uint32"
case types.Uint64:
kind = "uint64"
case types.Uintptr:
kind = "uintptr"
case types.Float32:
kind = "float32"
case types.Float64:
kind = "float64"
case types.Complex64:
kind = "complex64"
case types.Complex128:
kind = "complex128"
case types.String:
kind = "string"
case types.UnsafePointer:
kind = "unsafeptr"
default:
panic("unknown basic type: " + t.Name())
}
return "basic:" + name + kind
case *types.Chan:
return "chan:" + name + getTypeCodeName(t.Elem())
case *types.Interface:
methods := make([]string, t.NumMethods())
for i := 0; i < t.NumMethods(); i++ {
methods[i] = getTypeCodeName(t.Method(i).Type())
}
return "interface:" + name + "{" + strings.Join(methods, ",") + "}"
case *types.Map:
keyType := getTypeCodeName(t.Key())
elemType := getTypeCodeName(t.Elem())
return "map:" + name + "{" + keyType + "," + elemType + "}"
case *types.Pointer:
return "pointer:" + name + getTypeCodeName(t.Elem())
case *types.Signature:
params := make([]string, t.Params().Len())
for i := 0; i < t.Params().Len(); i++ {
params[i] = getTypeCodeName(t.Params().At(i).Type())
}
results := make([]string, t.Results().Len())
for i := 0; i < t.Results().Len(); i++ {
results[i] = getTypeCodeName(t.Results().At(i).Type())
}
return "func:" + name + "{" + strings.Join(params, ",") + "}{" + strings.Join(results, ",") + "}"
case *types.Slice:
return "slice:" + name + getTypeCodeName(t.Elem())
case *types.Struct:
elems := make([]string, t.NumFields())
for i := 0; i < t.NumFields(); i++ {
elems[i] = getTypeCodeName(t.Field(i).Type())
}
return "struct:" + name + "{" + strings.Join(elems, ",") + "}"
default:
panic("unknown type: " + t.String())
}
}
// getTypeMethodSet returns a reference (GEP) to a global method set. This
// method set should be unreferenced after the interface lowering pass.
func (c *Compiler) getTypeMethodSet(typ types.Type) (llvm.Value, error) {
global := c.mod.NamedGlobal(typ.String() + "$methodset")
zero := llvm.ConstInt(c.ctx.Int32Type(), 0, false)
if !global.IsNil() {
// the method set already exists
return llvm.ConstGEP(global, []llvm.Value{zero, zero}), nil
}
ms := c.ir.Program.MethodSets.MethodSet(typ)
if ms.Len() == 0 {
// no methods, so can leave that one out
return llvm.ConstPointerNull(llvm.PointerType(c.mod.GetTypeByName("runtime.interfaceMethodInfo"), 0)), nil
}
methods := make([]llvm.Value, ms.Len())
interfaceMethodInfoType := c.mod.GetTypeByName("runtime.interfaceMethodInfo")
for i := 0; i < ms.Len(); i++ {
method := ms.At(i)
signatureGlobal := c.getMethodSignature(method.Obj().(*types.Func))
f := c.ir.GetFunction(c.ir.Program.MethodValue(method))
if f.LLVMFn.IsNil() {
// compiler error, so panic
panic("cannot find function: " + f.LinkName())
}
fn, err := c.getInterfaceInvokeWrapper(f)
if err != nil {
return llvm.Value{}, err
}
methodInfo := llvm.ConstNamedStruct(interfaceMethodInfoType, []llvm.Value{
signatureGlobal,
llvm.ConstBitCast(fn, c.i8ptrType),
})
methods[i] = methodInfo
}
arrayType := llvm.ArrayType(interfaceMethodInfoType, len(methods))
value := llvm.ConstArray(interfaceMethodInfoType, methods)
global = llvm.AddGlobal(c.mod, arrayType, typ.String()+"$methodset")
global.SetInitializer(value)
global.SetGlobalConstant(true)
global.SetLinkage(llvm.PrivateLinkage)
return llvm.ConstGEP(global, []llvm.Value{zero, zero}), nil
}
// getInterfaceMethodSet returns a global variable with the method set of the
// given named interface type. This method set is used by the interface lowering
// pass.
func (c *Compiler) getInterfaceMethodSet(typ *types.Named) llvm.Value {
global := c.mod.NamedGlobal(typ.String() + "$interface")
zero := llvm.ConstInt(c.ctx.Int32Type(), 0, false)
if !global.IsNil() {
// method set already exist, return it
return llvm.ConstGEP(global, []llvm.Value{zero, zero})
}
// Every method is a *i16 reference indicating the signature of this method.
methods := make([]llvm.Value, typ.Underlying().(*types.Interface).NumMethods())
for i := range methods {
method := typ.Underlying().(*types.Interface).Method(i)
methods[i] = c.getMethodSignature(method)
}
value := llvm.ConstArray(methods[0].Type(), methods)
global = llvm.AddGlobal(c.mod, value.Type(), typ.String()+"$interface")
global.SetInitializer(value)
global.SetGlobalConstant(true)
global.SetLinkage(llvm.PrivateLinkage)
return llvm.ConstGEP(global, []llvm.Value{zero, zero})
}
// getMethodSignature returns a global variable which is a reference to an
// external *i16 indicating the indicating the signature of this method. It is
// used during the interface lowering pass.
func (c *Compiler) getMethodSignature(method *types.Func) llvm.Value {
signature := ir.MethodSignature(method)
signatureGlobal := c.mod.NamedGlobal("func " + signature)
if signatureGlobal.IsNil() {
signatureGlobal = llvm.AddGlobal(c.mod, c.ctx.Int8Type(), "func "+signature)
signatureGlobal.SetGlobalConstant(true)
}
return signatureGlobal
}
// parseTypeAssert will emit the code for a typeassert, used in if statements
// and in type switches (Go SSA does not have type switches, only if/else
// chains). Note that even though the Go SSA does not contain type switches,
// LLVM will recognize the pattern and make it a real switch in many cases.
//
// Type asserts on concrete types are trivial: just compare type numbers. Type
// asserts on interfaces are more difficult, see the comments in the function.
func (c *Compiler) parseTypeAssert(frame *Frame, expr *ssa.TypeAssert) (llvm.Value, error) {
itf, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
assertedType, err := c.getLLVMType(expr.AssertedType)
if err != nil {
return llvm.Value{}, err
}
valueNil, err := c.getZeroValue(assertedType)
if err != nil {
return llvm.Value{}, err
}
actualTypeNum := c.builder.CreateExtractValue(itf, 0, "interface.type")
commaOk := llvm.Value{}
if _, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type.
// This pseudo call will be lowered in the interface lowering pass to a
// real call which checks whether the provided typecode is any of the
// concrete types that implements this interface.
// This is very different from how interface asserts are implemented in
// the main Go compiler, where the runtime checks whether the type
// implements each method of the interface. See:
// https://research.swtch.com/interfaces
methodSet := c.getInterfaceMethodSet(expr.AssertedType.(*types.Named))
commaOk = c.createRuntimeCall("interfaceImplements", []llvm.Value{actualTypeNum, methodSet}, "")
} else {
// Type assert on concrete type.
// Call runtime.typeAssert, which will be lowered to a simple icmp or
// const false in the interface lowering pass.
assertedTypeCodeGlobal := c.getTypeCode(expr.AssertedType)
commaOk = c.createRuntimeCall("typeAssert", []llvm.Value{actualTypeNum, assertedTypeCodeGlobal}, "typecode")
}
// Add 2 new basic blocks (that should get optimized away): one for the
// 'ok' case and one for all instructions following this type assert.
// This is necessary because we need to insert the casted value or the
// nil value based on whether the assert was successful. Casting before
// this check tells LLVM that it can use this value and may
// speculatively dereference pointers before the check. This can lead to
// a miscompilation resulting in a segfault at runtime.
// Additionally, this is even required by the Go spec: a failed
// typeassert should return a zero value, not an incorrectly casted
// value.
prevBlock := c.builder.GetInsertBlock()
okBlock := c.ctx.AddBasicBlock(frame.fn.LLVMFn, "typeassert.ok")
nextBlock := c.ctx.AddBasicBlock(frame.fn.LLVMFn, "typeassert.next")
frame.blockExits[frame.currentBlock] = nextBlock // adjust outgoing block for phi nodes
c.builder.CreateCondBr(commaOk, okBlock, nextBlock)
// Retrieve the value from the interface if the type assert was
// successful.
c.builder.SetInsertPointAtEnd(okBlock)
var valueOk llvm.Value
if _, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type. Easy: just return the same
// interface value.
valueOk = itf
} else {
// Type assert on concrete type. Extract the underlying type from
// the interface (but only after checking it matches).
valuePtr := c.builder.CreateExtractValue(itf, 1, "typeassert.value.ptr")
size := c.targetData.TypeAllocSize(assertedType)
if size > c.targetData.TypeAllocSize(c.i8ptrType) {
// Value was stored in an allocated buffer, load it from there.
valuePtrCast := c.builder.CreateBitCast(valuePtr, llvm.PointerType(assertedType, 0), "")
valueOk = c.builder.CreateLoad(valuePtrCast, "typeassert.value.ok")
} else if size == 0 {
valueOk, err = c.getZeroValue(assertedType)
if err != nil {
return llvm.Value{}, err
}
} else {
// Value was stored directly in the interface.
switch assertedType.TypeKind() {
case llvm.IntegerTypeKind:
valueOk = c.builder.CreatePtrToInt(valuePtr, assertedType, "typeassert.value.ok")
case llvm.PointerTypeKind:
valueOk = c.builder.CreateBitCast(valuePtr, assertedType, "typeassert.value.ok")
default: // struct, float, etc.
// A bitcast would be useful here, but bitcast doesn't allow
// aggregate types. So we'll bitcast it using an alloca.
// Hopefully this will get optimized away.
mem := c.builder.CreateAlloca(c.i8ptrType, "")
c.builder.CreateStore(valuePtr, mem)
memCast := c.builder.CreateBitCast(mem, llvm.PointerType(assertedType, 0), "")
valueOk = c.builder.CreateLoad(memCast, "typeassert.value.ok")
}
}
}
c.builder.CreateBr(nextBlock)
// Continue after the if statement.
c.builder.SetInsertPointAtEnd(nextBlock)
phi := c.builder.CreatePHI(assertedType, "typeassert.value")
phi.AddIncoming([]llvm.Value{valueNil, valueOk}, []llvm.BasicBlock{prevBlock, okBlock})
if expr.CommaOk {
tuple := c.ctx.ConstStruct([]llvm.Value{llvm.Undef(assertedType), llvm.Undef(c.ctx.Int1Type())}, false) // create empty tuple
tuple = c.builder.CreateInsertValue(tuple, phi, 0, "") // insert value
tuple = c.builder.CreateInsertValue(tuple, commaOk, 1, "") // insert 'comma ok' boolean
return tuple, nil
} else {
// This is kind of dirty as the branch above becomes mostly useless,
// but hopefully this gets optimized away.
c.createRuntimeCall("interfaceTypeAssert", []llvm.Value{commaOk}, "")
return phi, nil
}
}
// getInvokeCall creates and returns the function pointer and parameters of an
// interface call. It can be used in a call or defer instruction.
func (c *Compiler) getInvokeCall(frame *Frame, instr *ssa.CallCommon) (llvm.Value, []llvm.Value, error) {
// Call an interface method with dynamic dispatch.
itf, err := c.parseExpr(frame, instr.Value) // interface
if err != nil {
return llvm.Value{}, nil, err
}
llvmFnType, err := c.getLLVMType(instr.Method.Type())
if err != nil {
return llvm.Value{}, nil, err
}
// getLLVMType() has created a closure type for us, but we don't actually
// want a closure type as an interface call can never be a closure call. So
// extract the function pointer type from the closure.
llvmFnType = llvmFnType.Subtypes()[1]
typecode := c.builder.CreateExtractValue(itf, 0, "invoke.typecode")
values := []llvm.Value{
typecode,
c.getInterfaceMethodSet(instr.Value.Type().(*types.Named)),
c.getMethodSignature(instr.Method),
}
fn := c.createRuntimeCall("interfaceMethod", values, "invoke.func")
fnCast := c.builder.CreateBitCast(fn, llvmFnType, "invoke.func.cast")
receiverValue := c.builder.CreateExtractValue(itf, 1, "invoke.func.receiver")
args := []llvm.Value{receiverValue}
for _, arg := range instr.Args {
val, err := c.parseExpr(frame, arg)
if err != nil {
return llvm.Value{}, nil, err
}
args = append(args, val)
}
// Add the context parameter. An interface call never takes a context but we
// have to supply the parameter anyway.
args = append(args, llvm.Undef(c.i8ptrType))
// Add the parent goroutine handle.
args = append(args, llvm.Undef(c.i8ptrType))
return fnCast, args, nil
}
// interfaceInvokeWrapper keeps some state between getInterfaceInvokeWrapper and
// createInterfaceInvokeWrapper. The former is called during IR construction
// itself and the latter is called when finishing up the IR.
type interfaceInvokeWrapper struct {
fn *ir.Function
wrapper llvm.Value
receiverType llvm.Type
}
// Wrap an interface method function pointer. The wrapper takes in a pointer to
// the underlying value, dereferences it, and calls the real method. This
// wrapper is only needed when the interface value actually doesn't fit in a
// pointer and a pointer to the value must be created.
func (c *Compiler) getInterfaceInvokeWrapper(f *ir.Function) (llvm.Value, error) {
wrapperName := f.LinkName() + "$invoke"
wrapper := c.mod.NamedFunction(wrapperName)
if !wrapper.IsNil() {
// Wrapper already created. Return it directly.
return wrapper, nil
}
// Get the expanded receiver type.
receiverType, err := c.getLLVMType(f.Params[0].Type())
if err != nil {
return llvm.Value{}, err
}
expandedReceiverType := c.expandFormalParamType(receiverType)
// Does this method even need any wrapping?
if len(expandedReceiverType) == 1 && receiverType.TypeKind() == llvm.PointerTypeKind {
// Nothing to wrap.
// Casting a function signature to a different signature and calling it
// with a receiver pointer bitcasted to *i8 (as done in calls on an
// interface) is hopefully a safe (defined) operation.
return f.LLVMFn, nil
}
// create wrapper function
fnType := f.LLVMFn.Type().ElementType()
paramTypes := append([]llvm.Type{c.i8ptrType}, fnType.ParamTypes()[len(expandedReceiverType):]...)
wrapFnType := llvm.FunctionType(fnType.ReturnType(), paramTypes, false)
wrapper = llvm.AddFunction(c.mod, wrapperName, wrapFnType)
c.interfaceInvokeWrappers = append(c.interfaceInvokeWrappers, interfaceInvokeWrapper{
fn: f,
wrapper: wrapper,
receiverType: receiverType,
})
return wrapper, nil
}
// createInterfaceInvokeWrapper finishes the work of getInterfaceInvokeWrapper,
// see that function for details.
func (c *Compiler) createInterfaceInvokeWrapper(state interfaceInvokeWrapper) error {
wrapper := state.wrapper
fn := state.fn
receiverType := state.receiverType
wrapper.SetLinkage(llvm.InternalLinkage)
wrapper.SetUnnamedAddr(true)
// add debug info if needed
if c.Debug {
pos := c.ir.Program.Fset.Position(fn.Pos())
difunc, err := c.attachDebugInfoRaw(fn, wrapper, "$invoke", pos.Filename, pos.Line)
if err != nil {
return err
}
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
}
// set up IR builder
block := c.ctx.AddBasicBlock(wrapper, "entry")
c.builder.SetInsertPointAtEnd(block)
var receiverPtr llvm.Value
if c.targetData.TypeAllocSize(receiverType) > c.targetData.TypeAllocSize(c.i8ptrType) {
// The receiver is passed in using a pointer. We have to load it here
// and pass it by value to the real function.
// Load the underlying value.
receiverPtrType := llvm.PointerType(receiverType, 0)
receiverPtr = c.builder.CreateBitCast(wrapper.Param(0), receiverPtrType, "receiver.ptr")
} else {
// The value is stored in the interface, but it is of type struct which
// is expanded to multiple parameters (e.g. {i8, i8}). So we have to
// receive the struct as parameter, expand it, and pass it on to the
// real function.
// Cast the passed-in i8* to the struct value (using an alloca) and
// extract its values.
alloca := c.builder.CreateAlloca(c.i8ptrType, "receiver.alloca")
c.builder.CreateStore(wrapper.Param(0), alloca)
receiverPtr = c.builder.CreateBitCast(alloca, llvm.PointerType(receiverType, 0), "receiver.ptr")
}
receiverValue := c.builder.CreateLoad(receiverPtr, "receiver")
params := append(c.expandFormalParam(receiverValue), wrapper.Params()[1:]...)
if fn.LLVMFn.Type().ElementType().ReturnType().TypeKind() == llvm.VoidTypeKind {
c.builder.CreateCall(fn.LLVMFn, params, "")
c.builder.CreateRetVoid()
} else {
ret := c.builder.CreateCall(fn.LLVMFn, params, "ret")
c.builder.CreateRet(ret)
}
return nil
}