Previously all (except one!) usage of goenv.Version manually added the
git sha1 hash, leading to duplicate code. I've moved this to do it all
in one place, to avoid this duplication.
Instead of markGlobals calling markRoots unconditionally (which doesn't
make sense for -gc=none and -gc=leaking), provide markRoots as a
callback function.
This is in preparation for -gc=boehm, where the previous design is even
more awkward and a callback makes far more sense.
I've tested the size impact using `make smoketest XTENSA=0`. There is
none, except for two cases:
* One with `-opt=0` so const-propagation for the callback didn't take
place.
* One other on AVR, I don't know why but as it's only 16 bytes in a
very specific case I'm going to assume it's just a random change in
compiler output that caused a size difference.
This adds true GOOS=wasip1 support in addition to our existing
-target=wasi support. The old support for WASI isn't removed, but should
be treated as deprecated and will likely be removed eventually to reduce
the test burden.
This is just support for the chip, no boards are currently supported.
However, you can use this target on a custom board.
Notes:
- This required a new runtime and machine implementation, because the
hardware is actually very different (and much nicer than older
AVRs!).
- I had to update gen-device-avr to support this chip. This also
affects the generated output of other AVRs, but I checked all chips
we support and there shouldn't be any backwards incompatible
changes.
- I did not implement peripherals like UART, I2C, SPI, etc because I
don't need them. That is left to do in the future.
You can flash these chips with only a UART and a 1kOhm resistor, which
is really nice (no special hardware needed). Here is the program I've
used for this purpose: https://pypi.org/project/pymcuprog/
This basically reverts https://github.com/tinygo-org/tinygo/pull/3357
and replaces it with a different mechanism to get to the same goal.
I do not think filtering tags like this is a good idea: it's the wrong
part of the compiler to be concerned with such tags (that part sets
tags, but doesn't modify existing tags). Instead, I've written the
//go:build lines in such a way that it has the same effect: WASI
defaults to leveldb, everything else defaults to fnv, and it's possible
to override the default using build tags.
This is not very useful in itself, but makes it possible to detect this
address in the output. See the next commit.
This adds around 50 bytes to each binary (except for AVR and wasm). This
is unfortunate, but I think this feature is quite useful still.
A future enhancement might be to create a build tag for extended panic
information that's not set by default.
The runtime.stringFromBytesTyped and runtime.stringToBytesTyped
functions aren't really necessary, because they have the same LLVM IR
signature. Therefore, remove them and link directly to the functions
that the compiler uses internally.
We have an optimization for this specific pattern, but it's really just
a hack. With the addition of unsafe.Add in Go 1.17 we can directly
specify the intent instead and eventually remove this special case.
The code is also easier to read.
Some vector registers must be preserved across calls, but this wasn't
happening on Linux and MacOS. When I added support for windows/arm64, I
saw that it required these vector registers to be preserved and assumed
this was Windows deviating from the standard calling convention. But
actually, Windows was just implementing the standard calling convention
and the bug was on Linux and MacOS.
This commit fixes the bug on Linux and MacOS and at the same time merges
the Go and assembly files as they no longer need to be separate.
This is a big commit that changes the way runtime type information is stored in
the binary. Instead of compressing it and storing it in a number of sidetables,
it is stored similar to how the Go compiler toolchain stores it (but still more
compactly).
This has a number of advantages:
* It is much easier to add new features to reflect support. They can simply
be added to these structs without requiring massive changes (especially in
the reflect lowering pass).
* It removes the reflect lowering pass, which was a large amount of hard to
understand and debug code.
* The reflect lowering pass also required merging all LLVM IR into one
module, which is terrible for performance especially when compiling large
amounts of code. See issue 2870 for details.
* It is (probably!) easier to reason about for the compiler.
The downside is that it increases code size a bit, especially when reflect is
involved. I hope to fix some of that in later patches.
This was actually surprising once I got TinyGo to build on Windows 11
ARM64. All the changes are exactly what you'd expect for a new
architecture, there was no special weirdness just for arm64.
Actually getting TinyGo to build was kind of involved though. The very
short summary is: install arm64 versions of some pieces of software
(like golang, cmake) instead of installing them though choco. In
particular, use the llvm-mingw[1] toolchain instead of using standard
mingw.
[1]: https://github.com/mstorsjo/llvm-mingw/releases