There were a few issues that were causing qemu-system-arm and
qemu-system-riscv to give the wrong exit codes. They are in fact capable
of exiting with 0 or 1 signalled from the running application, but this
functionality wasn't used. This commit changes this in the following
ways:
* It fixes SemiHosting codes, which were incorrectly written in
decimal while they should have been written in hexadecimal (oops!).
* It modifies all the baremetal main functions (aka reset handlers) to
exit with `exit(0)` instead of `abort()`.
* It changes `syscall.Exit` to call `exit(code)` instead of `abort()`
on baremetal targets.
* It adds these new exit functions where necessary, implemented in a
way that signals the correct exit status if running under QEMU.
All in all, this means that `tinygo test` doesn't have to look at the
output of a test to determine the outcome. It can simply look at the
exit code.
There is no reason to specialize this per chip as it is only ever used
for JavaScript. Not only that, it is causing confusion and is yet
another quirk to learn when porting the runtime to a new
microcontroller.
For example, for running tests with -target=wasm or
-target=cortex-m-qemu. It looks at the output to determine whether tests
were successful in the absence of a status code.
This reduces current consumption from 500-1000µA to very low (<10µA)
current consumption. This change is important for battery powered
devices, especially devices that may be running for long periods of
time.
This commit refactors both determining the current time and sleeping for
a given time. It also improves precision for many chips.
* The nrf chips had a long-standing TODO comment about a slightly
inaccurate clock. This should now be fixed.
* The SAM D2x/D5x chips may have a slightly more accurate clock,
although probably within the error margin of the RTC. Also, by
working with RTC ticks and converting in the least number of places,
code size is often slightly reduced (usually just a few bytes, up to
around 1kB in some cases).
* I believe the HiFive1 rev B timer was slightly wrong (32768Hz vs
30517.6Hz). Because the datasheet says the clock runs at 32768Hz,
I've used the same conversion code here as in the nrf and sam cases.
* I couldn't test both stm32 timers, so I kept them as they currently
are. It may be possible to make them more efficient by using the
native tick frequency instead of using microseconds everywhere.
This is the kind that is used in Go (actually CGo) for exporting
functions. I think it's best to use //export instead of our custom
//go:export pragma, for consistency (they are equivalent in TinyGo).
Therefore I've updated all instances to the standard format (except for
two that are updated in https://github.com/tinygo-org/tinygo/pull/1024).
No smoke tests changed (when comparing the output hash), except for some
wasm tests that include DWARF debug info and tend to be flaky anyway.