We have an optimization for this specific pattern, but it's really just
a hack. With the addition of unsafe.Add in Go 1.17 we can directly
specify the intent instead and eventually remove this special case.
The code is also easier to read.
This is a big commit that changes the way runtime type information is stored in
the binary. Instead of compressing it and storing it in a number of sidetables,
it is stored similar to how the Go compiler toolchain stores it (but still more
compactly).
This has a number of advantages:
* It is much easier to add new features to reflect support. They can simply
be added to these structs without requiring massive changes (especially in
the reflect lowering pass).
* It removes the reflect lowering pass, which was a large amount of hard to
understand and debug code.
* The reflect lowering pass also required merging all LLVM IR into one
module, which is terrible for performance especially when compiling large
amounts of code. See issue 2870 for details.
* It is (probably!) easier to reason about for the compiler.
The downside is that it increases code size a bit, especially when reflect is
involved. I hope to fix some of that in later patches.
Go 1.19 started reformatting code in a way that makes it more obvious
how it will be rendered on pkg.go.dev. It gets it almost right, but not
entirely. Therefore, I had to modify some of the comments so that they
are formatted correctly.
This function is used by the hash/maphash package.
Unfortunately, I couldn't get the hash/maphash package to pass tests
because it's too slow. I think it hits the quadratic complexity of the
current map implementation.
Operations on nil maps are accepted and shouldn't
panic. The base hashmapGet/hashmapDelete handled
nil-maps correctly, but the hashmapBinary versions
could segfault accessing the nil map while trying
to hash the key.
Fixes#2341
This allows positive and negative zero to hash to the same value,
as required by Go.
This is not perfect, but the best I could do without
revamping all the hash funtions to take a seed.
Fixes#2356
This layout parameter is currently always nil and ignored, but will
eventually contain a pointer to a memory layout.
This commit also adds module verification to the transform tests, as I
found out that it didn't (and therefore didn't initially catch all
bugs).
This fixes a type system loophole. The following program would
incorrectly run in TinyGo, while it would trigger a panic in Go:
package main
import "reflect"
func main() {
v := reflect.ValueOf(struct {
x int
}{})
x := v.Field(0).Interface()
println("x:", x.(int))
}
Playground link: https://play.golang.org/p/nvvA18XFqFC
The panic in Go is the following:
panic: reflect.Value.Interface: cannot return value obtained from unexported field or method
I've shortened it in TinyGo to save a little bit of space.
This matches the main Go implementation and (among others) fixes a
compatibility issue with the encoding/json package. The encoding/json
package compares reflect.Type variables against nil, which does not work
as long as reflect.Type is of integer type.
This also adds a reflect.RawType() function (like reflect.Type()) that
makes it easier to avoid working with interfaces in the runtime package.
It is internal only, but exported to let the runtime package use it.
This change introduces a small code size increase when working with the
reflect package, but I've tried to keep it to a minimum. Most programs
that don't make extensive use of the reflect package (and don't use
package like fmt) should not be impacted by this.
This appears to be allowed by the specification, at least it is allowed
by the main Go implementation: https://play.golang.org/p/S8jxAMytKDB
Allow it in TinyGo too, for consistency.
Found because it is triggered with `tinygo test flags`. This doesn't
make the flags package pass all tests, but is a step closer.
This implementation simply casts types without special support to an
interface, to make the implementation simpler and possibly reducing the
code size too. It will likely be slower than the canonical Go
implementation though (which builds special compare and hash functions
at compile time).
* Use 64-bit integers on 64-bit platforms, just like gc and gccgo:
https://golang.org/doc/go1.1#int
* Do not use a separate length type. Instead, use uintptr everywhere a
length is expected.
Bigger hashmaps (size > 8) use multiple buckets in a chain. The lookup
code looked at multiple buckets for a lookup, but kept checking the
first bucket for key equality.
TODO: do better at it by tracking min/max values of integers. The
following straightforward code doesn't have its bounds checks removed:
for _, n := range slice {
println(n)
}