This is the kind that is used in Go (actually CGo) for exporting
functions. I think it's best to use //export instead of our custom
//go:export pragma, for consistency (they are equivalent in TinyGo).
Therefore I've updated all instances to the standard format (except for
two that are updated in https://github.com/tinygo-org/tinygo/pull/1024).
No smoke tests changed (when comparing the output hash), except for some
wasm tests that include DWARF debug info and tend to be flaky anyway.
This commit lets the compiler know about interrupts and allows
optimizations to be performed based on that: interrupts are eliminated
when they appear to be unused in a program. This is done with a new
pseudo-call (runtime/interrupt.New) that is treated specially by the
compiler.
Before this commit, goroutine support was spread through the compiler.
This commit changes this support, so that the compiler itself only
generates simple intrinsics and leaves the real support to a compiler
pass that runs as one of the TinyGo-specific optimization passes.
The biggest change, that was done together with the rewrite, was support
for goroutines in WebAssembly for JavaScript. The challenge in
JavaScript is that in general no blocking operations are allowed, which
means that programs that call time.Sleep() but do not start goroutines
also have to be scheduled by the scheduler.
The default priority is 0 (highest) which is reserved by the SoftDevice.
For normal operation the exact priority level doesn't matter, only the
relative priority matters. So this change makes the code compatible with
the SoftDevice without actually changing the behavior.
Let each target handle its own initialization/finalization sequence
instead of providing one in the runtime with hooks for memory
initialization etc. This is much more flexible although it causes a
little bit of code duplication.
This code:
foo & 0xffffff
Is equivalent to this code:
foo % 0x1000000
However, to drop the high 8 bits, this calculation was used:
foo % 0xffffff
This is far more expensive (and incorrect), as it needs an actual modulo
operation which increases code size and probably reduces speed on a
Cortex-M4 and needs library functions for a Cortex-M0 increasing code
size by a much bigger amount.
This is one step towards removing unnecessary special casts in most
cases. It is also part of removing as much magic as possible from the
compiler (the pragma is explicit, the special name is not).
This increases code size by 1 instruction (2 bytes) because LLVM isn't
yet smart enough to recognize that it doesn't need to clear a register
to use 0: it can just use r1 which is always 0 according to the
convention. It makes initialization a lot easier to read, however.
time.Sleep now compiles on all systems, so lets use that.
Additionally, do a few improvements in time unit handling for the
scheduler. This should lead to somewhat longer sleep durations without
wrapping (on some platforms).
Some examples got smaller, some got bigger. In particular, code using
the scheduler got bigger and the blinky1 example got smaller (especially
on Arduino: 380 -> 314 bytes).
This is the last critical part of the C runtime.
Code size is reduced by 4 bytes for examples/blinky2 (probably due to
inlining) and is unchanged for examples/test.
This has the benefit of not requiring a 'runtime' IR file, so that
complete relocatable files can be built without requiring input IR.
This makes the compiler a lot easier to use without the Makefile.
Code size is not affected.
CGo depends on syscall, which (in the standard library) depends on sync,
which depends on the runtime. There are also other import cycles. To be
able to use the syscall package from upstream, stop using CGo.