Instead of defining them separately for each board, define them once in
the chip definition and later simply use &sercomUART1 etc. to refer to
them. This is simpler and less error-prone.
I found two bugs while working on this:
- The P1AM-100 board mixed SERCOM 5 and SERCOM 3. It looks like SERCOM
5 was intended, based on the used pins.
- The Adafruit Matrix Portal appears to have configured the wrong
interrupt.
Unfortunately, I can't test these fixes. However, they make it clear
that such a change is important to avoid bugs.
I tested this commit on the PyBadge and the Circuit Playground Express.
This chip can run so much faster! Let's update the default frequency.
Also, change the UART implementation to be more fexible regarding the
clock frequency.
This change adds support for the ESP32-C3, a new chip from Espressif. It
is a RISC-V core so porting was comparatively easy.
Most peripherals are shared with the (original) ESP32 chip, but with
subtle differences. Also, the SVD file I've used gives some
peripherals/registers a different name which makes sharing code harder.
Eventually, when an official SVD file for the ESP32 is released, I
expect that a lot of code can be shared between the two chips.
More information: https://www.espressif.com/en/products/socs/esp32-c3
TODO:
- stack scheduler
- interrupts
- most peripherals (SPI, I2C, PWM, etc)
This can be very useful for some purposes:
* It makes it possible to disable the UART in cases where it is not
needed or needs to be disabled to conserve power.
* It makes it possible to disable the serial output to reduce code
size, which may be important for some chips. Sometimes, a few kB can
be saved this way.
* It makes it possible to override the default, for example you might
want to use an actual UART to debug the USB-CDC implementation.
It also lowers the dependency on having machine.Serial defined, which is
often not defined when targeting a chip. Eventually, we might want to
make it possible to write `-target=nrf52` or `-target=atmega328p` for
example to target the chip itself with no board specific assumptions.
The defaults don't change. I checked this by running `make smoketest`
before and after and comparing the results.
This only works with a custom bossac build from Arduino, not with the
upstream version. It avoids needing the manual "double tap" to enter
bootloader mode before flashing firmware.
Other chips support explicit control of pull-up vs pull-down for GPIO input. Support that with bluepill also. PinInputPullUpDown is maintained for back-compat. It is implicit pull-down.
Previously, the machine.UART0 object had two meanings:
- it was the first UART on the chip
- it was the default output for println
These two meanings conflict, and resulted in workarounds like:
- Defining UART0 to refer to the USB-CDC interface (atsamd21,
atsamd51, nrf52840), even though that clearly isn't an UART.
- Defining NRF_UART0 to avoid a conflict with UART0 (which was
redefined as a USB-CDC interface).
- Defining aliases like UART0 = UART1, which refer to the same
hardware peripheral (stm32).
This commit changes this to use a new machine.Serial object for the
default serial port. It might refer to the first or second UART
depending on the board, or even to the USB-CDC interface. Also, UART0
now really refers to the first UART on the chip, no longer to a USB-CDC
interface.
The changes in the runtime package are all just search+replace. The
changes in the machine package are a mixture of search+replace and
manual modifications.
This commit does not affect binary size, in fact it doesn't affect the
resulting binary at all.
This means that machine.UART0, machine.UART1, etc are of type
*machine.UART, not machine.UART. This makes them easier to pass around
and avoids surprises when they are passed around by value while they
should be passed around by reference.
There is a small code size impact in some cases, but it is relatively
minor.
Make the USBCDC use a pointer receiver everywhere. This makes it easier
to pass around the object in the future.
This commit sometimes changes code size, but not significantly (a few
bytes) and usually in a positive way.
My eventual goal is the following:
- Declare `machine.USB` (or similar, name TBD) as a pointer receiver
for the USB-CDC interface.
- Let `machine.UART0` always point to an UART, never actually to a
USBCDC object.
- Define `machine.Serial`, which is either a real UART or an USB-CDC,
depending on the board.
This way, if you want a real UART you can use machine.UARTx and if you
just want to print to the default serial port, you can use
machine.Serial.
This change does have an effect on code size and memory consumption.
There is often a small reduction (-8 bytes) in RAM consumption and an
increase in flash consumption.