This commit changes many things:
* Most interface-related operations are moved into an optimization
pass for more modularity. IR construction creates pseudo-calls which
are lowered in this pass.
* Type codes are assigned in this interface lowering pass, after DCE.
* Type codes are sorted by usage: types more often used in type
asserts are assigned lower numbers to ease jump table construction
during machine code generation.
* Interface assertions are optimized: they are replaced by constant
false, comparison against a constant, or a typeswitch with only
concrete types in the general case.
* Interface calls are replaced with unreachable, direct calls, or a
concrete type switch with direct calls depending on the number of
implementing types. This hopefully makes some interface patterns
zero-cost.
These changes lead to a ~0.5K reduction in code size on Cortex-M for
testdata/interface.go. It appears that a major cause for this is the
replacement of function pointers with direct calls, which are far more
susceptible to optimization. Also, not having a fixed global array of
function pointers greatly helps dead code elimination.
This change also makes future optimizations easier, like optimizations
on interface value comparisons.
Move attaching debug info to where the function is defined. As LLVM does
not allow setting debug info on declarations, this makes more sense and
is less error-prone.
This commit fixes debug info when using CGo.
* Use 64-bit integers on 64-bit platforms, just like gc and gccgo:
https://golang.org/doc/go1.1#int
* Do not use a separate length type. Instead, use uintptr everywhere a
length is expected.
To support the WebAssembly<->JS barrier, return values also have to be
passed in memory. i64 return values are used by syscall/js, so must be
supported across this ABI barrier.
This makes it easier to get an overview of everything interface related,
because interfaces are quite complicated and were scattered through the
(huge!) compiler.go file.
This interpreter currently complements the Go SSA level interpreter. It
may stay complementary or may be the only interpreter in the future.
This interpreter is experimental and not yet finished (there are known
bugs!) so it is disabled by default. It can be enabled by passing the
-initinterp flag.
The goal is to be able to run all initializations at compile time except
for the ones having side effects. This mostly works except perhaps for a
few edge cases.
In the future, this interpeter may be used to actually run regular Go
code, perhaps in a shell.
I don't know why they sometimes have them, but apparently some packages
do. Don't panic in that case, the interpreter will stop anyway on the
first branch.
In Go, function pointers are not comparable. This means that the address
itself is not significant and functions can therefore be merged.
Add the unnamed_addr attribute to all functions to learn LLVM about this
fact. At the moment the mergefunc pass hasn't been enabled, but it
should be in the future to reduce code size.
JavaScript does not support i64 directly, so make sure we pass a pointer
instead which can be read from JavaScript.
This is a temporary workaround which should be removed once JavaScript
supports some form of i64 (probably in the form of BigInt).
When doing a slice operation on a slice, use the capacity value instead
of the length. Of course, for strings and arrays, the slice operation
checks the length because there is no capacity. But according to the
spec, this check should be based on cap for slice instead of len:
> For slices, the upper index bound is the slice capacity cap(a) rather
> than the length.
https://golang.org/ref/spec#Slice_expressions
Fixes: https://github.com/aykevl/tinygo/issues/65
A single *ssa.BasicBlock may be split in multiple LLVM basic blocks due
to typeassert instructions. This means the incoming block and outgoing
block are different. PHI nodes need to get the result from the outgoing
block, which was fixed before, but incoming branches need to branch to
the incoming block, not the outgoing block.
Branching to the outgoing block led to a LLVM verification error when
compiling the fmt package.
Originally found in (*fmt.pp).handleMethods.
This is a common operation:
freevar := ...
defer func() {
println("I am deferred:", freevar)
}()
The function is thus an immediately applied closure. Only this form is
currently supported, support for regular (fat) function pointers should
be trivial to add but is not currently implemented as it wasn't
necessary to get fmt to compile.
It is allowed to index with an int64 even on a 32-bit platform, so we
have to handle that case. But make sure the normal case isn't penalized
by using 32-bit numbers when possible.