Unfortunately, while doing this I found that it doesn't actually apply
in any real-world programs (tested with `make smoketest`), apparently
because nil pointer checking messes with the functionattrs pass. I hope
to fix that after moving to LLVM 9, which has an optimization that makes
nil pointer checking easier to implement.
Also add unit tests.
This is the first of several transformation (optimization/lowering)
passes that I'd like to move to the new transform package. This
separates the compiler from the optimizer.
Also, it finally adds unit tests for the compiler, not just end-to-end
compilation tests. This should improve robustness and should make it
easier to change these transformation passes in the future.
While the heap-to-stack transform is relatively simple, other passes are
much more complex. Adding unit tests not only helps robustness over
time, but also doubles as documentation as to what these transformation
passes do exactly.
This commit allows starting a new goroutine directly from a func value,
not just when the static callee is known.
This is necessary to support the whole time package, not just the
commonly used subset that was compiled with the SimpleDCE pass enabled.
A bug was introduced in the previous commit that led to miscompilations
in the time.Sleep function when the scheduler was disabled, because
time.Sleep (implemented in the runtime) tried to switch to the scheduler
stack.
This commit restores the binary size of most examples to what it was
before, but still reduces static RAM consumption (.bss) slightly. This
gives me some confidence that it does indeed fix the introduced bug.
This scheduler is intended to live along the (stackless) coroutine based
scheduler which is needed for WebAssembly and unsupported platforms. The
stack based scheduler is somewhat simpler in implementation as it does
not require full program transform passes and supports things like
function pointers and interface methods out of the box with no changes.
Code size is reduced in most cases, even in the case where no scheduler
scheduler is used at all. I'm not exactly sure why but these changes
likely allowed some further optimizations somewhere. Even RAM is
slightly reduced, perhaps some global was elminated in the process as
well.
Linked lists are usually implemented as follows:
type linkedList struct {
next *linkedList
data int // whatever
}
This caused a stack overflow while writing out the reflect run-time type
information. This has now been fixed by splitting the allocation of a
named type number from setting the underlying type in the sidetable.
Previously it would use a bitcast, which cannot directly be used on AVR
because functions live in a different address space on AVR. To fix this,
use a ptrtoint/inttoptr pair.
This allows testdata/coroutines.go to be compiled, but due to what
appears to be an LLVM bug cannot be optimized and codegen'ed:
tinygo: /home/ayke/src/github.com/tinygo-org/tinygo/llvm-project/llvm/lib/IR/Constants.cpp:1776: static llvm::Constant *llvm::ConstantExpr::getBitCast(llvm::Constant *, llvm::Type *, bool): Assertion `CastInst::castIsValid(Instruction::BitCast, C, DstTy) && "Invalid constantexpr bitcast!"' failed.
This happens as one of the function passes after the TinyGo passes and
after the module has been verified so most likely it is a bug somewhere
in LLVM.
There are a lot more fields that are important when comparing structs
with each other. Take them into account when building the unique ID per
struct type.
Example code that differs between the compilers:
https://play.golang.org/p/nDX4tSHOf_T
With this change, it becomes possible to get the element type of named
slices, pointers, and channels.
This is a prerequisite to enable the common named struct types. There's
more to come.
This commit fixes the following issue:
https://github.com/tinygo-org/tinygo/issues/309
Also, it prepares for some other reflect-related changes that should
make it easier to add support for named types (etc.) in the future.
This is a useful optimization for targets with the portable garbage
collector. It isn't as big as you might guess but it does optimize
functions inside the garbage collector itself (which obviously should
not allocate). WebAssembly output in one test is about 1% smaller.
This is directly useful to avoid some unsafety around runtime.alloc and
should be useful in general.
This pragma has the same form as in the main Go compiler:
https://github.com/golang/go/issues/12312
Some instructions do not create new values, they transform existing
values in some way (bitcast, getelementptr, etc.). Do not store them in
the stack object.
This lowers the size of the repulsion demo from 100kB to 98kB (with a
baseline of 72kB for the leaking GC). That's a useful reduction in file
size.
dumb -> leaking:
make it more clear what this "GC" does: leak everything.
marksweep -> conservative:
"marksweep" is too generic, use "conservative" to differentiate
between future garbage collectors: precise marksweep / mark-compact /
refcounting.
This is part of a larger rafactor that tries to shrink the ir package
and in general tries to shrink the amount of state that is kept around
in the compiler. The end goal is being able to compile packages
independent of each other, linking them together in a later stage. Along
the way, it cleans up lots of old cruft that has accumulated over the
months.
This refactor also results in globals being loaded lazily. This may be a
problem for some specific programs but will probably change back in a
commit in the near future.
Returning a nil value may lead to problems later on. Just return undef
here, so that further compilation will at least be safe (the result
will be discarded anyway).