This was actually surprising once I got TinyGo to build on Windows 11
ARM64. All the changes are exactly what you'd expect for a new
architecture, there was no special weirdness just for arm64.
Actually getting TinyGo to build was kind of involved though. The very
short summary is: install arm64 versions of some pieces of software
(like golang, cmake) instead of installing them though choco. In
particular, use the llvm-mingw[1] toolchain instead of using standard
mingw.
[1]: https://github.com/mstorsjo/llvm-mingw/releases
Using ThinLTO manages to optimize binaries quite significantly. The
exact amount varies a lot by program but it's about 10-15% usually.
Don't remove non-ThinLTO support yet. It would not surprise me if this
triggered some unintended side effect. Eventually, non-ThinLTO support
should be removed though.
This allows you to expand {tmpDir} in the json "emulator" field, and
uses it in wasmtime instead of custom TMPDIR mapping logic.
Before, we had custom logic for wasmtime to create a separate tmpDir
when running go tests. This overwrite the TMPDIR variable when running,
after making a mount point. A simpler way to accomplish the end goal of
writing temp files is to use wasmtime's map-dir instead. When code is
compiled to wasm with the wasi target, tempDir is always /tmp, so we
don't need to add variables (since we know what it is). Further, the
test code is the same between normal go and run through wasmtime. So, we
don't need to make a separate temp dir first, and avoiding that reduces
logic, as well makes it easier to swap out the emulator (for wazero
which has no depedencies). To map the correct directory, this introduces
a {tmpDir} token whose value is the host-specific value taken from
`os.TempDir()`.
The motivation I have for this isn't so much to clean up the wasmtime
code, but allow wazero to execute the same tests. After this change, the
only thing needed to pass tests is to change the emulator, due to
differences in how wazero deals with relative lookups (they aren't
restricted by default, so there's not a huge amount of custom logic
needed).
In other words, installing wazero from main, `make tinygo-test-wasi`
works with no other changes except this PR and patching
`targets/wasi.json`.
```json
"emulator": "wazero run -mount=.:/ -mount={tmpDir}:/tmp {}",
```
On that note, if there's a way to override the emulator via arg or env,
this would be even better, but in any case patching json is fine.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This implements the block-based GC as a partially precise GC. This means
that for most heap allocations it is known which words contain a pointer
and which don't. This should in theory make the GC faster (because it
can skip non-pointer object) and have fewer false positives in a GC
cycle. It does however use a bit more RAM to store the layout of each
object.
Right now this GC seems to be slower than the conservative GC, but
should be less likely to run out of memory as a result of false
positives.
ThinLTO results in a small code size reduction, which is nice
(especially on these very small chips). It also brings us one step
closer to using ThinLTO everywhere.
This reverts commit 0b3a7280fa and updates
the documentation a little bit to explain the purpose of -gc=none. (I'm
thinking about the attiny10 by the way where defaulting to -gc=none
makes sense).
Before this patch, `tinygo lldb path/to/package` would result in an
error:
(lldb) target create --arch=arm64-unknown-macosx10.12.0 "/var/folders/17/btmpymwj0wv6n50cmslwyr900000gn/T/tinygo2731663853/main"
error: the specified architecture 'arm64-unknown-macosx10.12.0' is not compatible with 'arm64-apple-macosx10.12.0' in '/var/folders/17/btmpymwj0wv6n50cmslwyr900000gn/T/tinygo2731663853/main'
This patch fixes this error.
Unfortunately, it doesn't get debug information to work yet. I still
haven't figured out what's going wrong here. But it's progress, I guess.
This is now possible because we're using the LLVM linker. It results in
some very minor code size reductions. The main benefit however is
consistency: eventually, all targets will support ThinLTO at which point
we can remove support for GNU linkers and simplify the compiler.
This flag controls whether to convert external i64 parameters for use in
a browser-like environment.
This flag was needed in the past because back then we only supported
wasm on browsers but no WASI. Now, I can't think of a reason why anybody
would want to change the default. For `-target=wasm` (used for
browser-like environments), the wasm_exec.js file expects this
i64-via-stack ABI. For WASI, there is no limitation on i64 values and
`-wasm-abi=generic` is the default.
This should hopefully fix the following issue:
DW_FORM_rnglistx index pointing outside of .debug_rnglists offset array [in module /tmp/tinygo4013272868/main]
This flag is necessary in LLVM 15 because it appears that LLVM 15 has
changed the default target ABI from lp64 to lp64d. This results in a
linker failure. Setting the "target-abi" forces the RISC-V backend to
use the intended target ABI.
This prefix isn't actually used and only adds noise, so remove it.
It may have been useful on Linux that makes a distinction between
/dev/ttyACM* and /dev/ttyUSB* but it isn't now. Also, it's unlikely that
the same vid/pid pair will be shared between an acm and usb driver
anyway.
Before, on the baremetal target or MacOS, we errored if the user
provided configuration to strip debug info.
Ex.
```bash
$ $ tinygo build -o main.go -scheduler=none --no-debug main.go
error: cannot remove debug information: MacOS doesn't store debug info in the executable by default
```
This is a poor experience which results in having OS-specific CLI
behavior. Silently succeeding is good keeping with the Linux philosophy
and less distracting than logging the same without failing.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This is just a papercut, and not really something important. But I
noticed something weird:
$ GOOS=windows GOARCH=arm tinygo info ""
LLVM triple: armv7-unknown-windows-gnueabihf-gnu
GOOS: windows
GOARCH: arm
That -gnueabihf-gnu ending is weird, it should pick one of the two. I've
fixed it as follows:
$ GOOS=windows GOARCH=arm tinygo info ""
LLVM triple: armv7-unknown-windows-gnu
GOOS: windows
GOARCH: arm
[...]
We're probably never going to support windows/arm (this is 32-bit arm,
not arm64) so it doesn't really matter which one we pick. And this patch
shouldn't affect any other system.
This should add support for things like quotes around tags, if they are
ever needed.
Only making this change now because I happened to stumble across
buildutil.TagsFlag.
This matches the flash-command and is generally a bit easier to work
with.
This commit also prepares for allowing multiple formats to be used in
the emulator command, which is necessary for the esp32.
Switch over to LLVM 14 for static builds. Keep using LLVM 13 for regular
builds for now.
This uses a branch of the upstream Espressif branch to fix an issue,
see: https://github.com/espressif/llvm-project/pull/59
Without this patch, the include directory isn't found and picolibc.h
(used indirectly by stdint.h for example) can't be found.
I would like to add tests for this but we currently don't run Xtensa
tests. This should be possible however using https://github.com/espressif/qemu/wiki
(see also: https://github.com/tinygo-org/tinygo/pull/2780).
ThinLTO optimizes across LLVM modules at link time. This means that
optimizations (such as inlining and const-propagation) are possible
between C and Go. This makes this change especially useful for CGo, but
not just for CGo. By doing some optimizations at link time, the linker
can discard some unused functions and this leads to a size reduction on
average. It does increase code size in some cases, but that's true for
most optimizations.
I've excluded a number of targets for now (wasm, avr, xtensa, windows,
macos). They can probably be supported with some more work, but that
should be done in separate PRs.
Overall, this change results in an average 3.24% size reduction over all
the tinygo.org/x/drivers smoke tests.
TODO: this commit runs part of the pass pipeline twice. We should set
the PrepareForThinLTO flag in the PassManagerBuilder for even further
reduced code size (0.7%) and improved compilation speed.
This means that it will be possible to generate a Darwin binary on any
platform (Windows, Linux, and MacOS of course), including CGo. Of
course, the resulting binaries can only run on MacOS itself.
The binary links against libSystem.dylib, which is a shared library. The
macos-minimal-sdk repository contains open source header files and
generated symbol stubs so we can generate a stub libSystem.dylib without
copying any closed source code.
This subcommand has been broken for a while, since libraries also use
the CPU flag. This commit fixes this.
Previously, libraries were usable for most Cortex-M cores. But with the
addition of the CPU field, I've limited it to three popular cores: the
Cortex-M0 (microbit), Cortex-M0+ (atsamd21), and Cortex-M4 (atsamd21,
nrf52, and many others).
In the future we might consider also building libraries for the current
OS/arch so that libraries like musl are already precompiled.