For some reason, the type of a function parameter can sometimes be of
interface type, while it should be the underlying type. This might be a
bug in the x/tools/go/ssa package but this is a simple workaround.
For some reason, these aren't lowered when a generic function is
instantiated by the SSA package.
I've left unsafe.Offsetof to be implemented later, it's a bit difficult
to do correctly the way the code is currently structured.
Without this change, the compiler would probably have worked just fine
but the generated types would look odd.
You can see in the test case that it now doesn't use `main.Point` but
rather the correct `main.Poin[float32]` etc.
This changes the compiler from treating calls to sync/atomic.* functions
as special calls (emitted directly at the call site) to actually
defining their declarations when there is no Go SSA implementation. And
rely on the inliner to inline these very small functions.
This works a bit better in practice. For example, this makes it possible
to use these functions in deferred function calls.
This commit is a bit large because it also needs to refactor a few
things to make it possible to define such intrinsic functions.
Move it from *builder to *compilerContext, so that it can be called in
more places. This is necessary to create a string value (for the file
name) in createEmbedGlobal.
Switch over to LLVM 14 for static builds. Keep using LLVM 13 for regular
builds for now.
This uses a branch of the upstream Espressif branch to fix an issue,
see: https://github.com/espressif/llvm-project/pull/59
This removes the parentHandle argument from the internal calling convention.
It was formerly used to implment coroutines.
Now that coroutines have been removed, it is no longer necessary.
When a package only uses runtime.trackPointer to create interface packs, the compiler fails to find runtime.trackPointer.
This change predeclares it alongside runtime.alloc and updates the tests to use runtime.trackPointer when the test's target uses it.
This adds proper debug locations to interp errors. For example, when
trying to use the unicode package on AVR (which currently doesn't work),
the following error is shown with this commit:
/usr/local/go1.17/src/unicode/casetables.go:13:31: interp: ptrtoint integer size does not equal pointer size
Before this commit, that error was a lot less helpful:
unicode/<init>:13:31: interp: ptrtoint integer size does not equal pointer size
Instead of storing an increasing version number in relevant packages
(compiler.Version, interp.Version, cgo.Version, ...), read the build ID
from the currently running executable. This has several benefits:
* All changes relevant to the compiled packages are caught.
* No need to bump the version for each change to these packages.
This avoids merge conflicts.
* During development, `go install` is enough. No need to run
`tinygo clean` all the time.
Of course, the drawback is that it might be updated a bit more often
than necessary but I think the overall benefit is big.
Regular release users shouldn't see any difference. Because the tinygo
binary stays the same, the cache works well.
This patch adds //go: pragmas directly to declared functions and
globals found during CGo processing. This simplifies the logic in the
compiler: it no longer has to consider special "C." prefixed function
names. It also makes the cgo pass more flexible in the pragmas it emits
for functions and global variables.
This PR fixes two bugs at once:
1. Indices were incorrectly extended to a bigger type. Specifically,
unsigned integers were sign extended and signed integers were zero
extended. This commit swaps them around.
2. The getelementptr instruction was given the raw index, even if it
was a uint8 for example. However, getelementptr assumes the indices
are signed, and therefore an index of uint8(200) was interpreted as
an index of int8(-56).
This matches Clang, and with that, it adds support for inlining between
Go and C because LLVM only allows inlining if the "target-cpu" and
"target-features" string attributes match.
For example, take a look at the following code:
// int add(int a, int b) {
// return a + b;
// }
import "C"
func main() {
println(C.add(3, 5))
}
The 'add' function is not inlined into the main function before this
commit, but after it, it can be inlined and trivially be optimized to
`println(8)`.
This makes sure that the LLVM target features match the one generated by
Clang:
- This fixes a bug introduced when setting the target CPU for all
targets: Cortex-M4 would now start using floating point operations
while they were disabled in C.
- This will make it possible in the future to inline C functions in Go
and vice versa. This will need some more work though.
There is a code size impact. Cortex-M4 targets are increased slightly in
binary size while Cortex-M0 targets tend to be reduced a little bit.
Other than that, there is little impact.
Instead of doing everything in the interrupt lowering pass, generate
some more code in gen-device to declare interrupt handler functions and
do some work in the compiler so that interrupt lowering becomes a lot
simpler.
This has several benefits:
- Overall code is smaller, in particular the interrupt lowering pass.
- The code should be a bit less "magical" and instead a bit easier to
read. In particular, instead of having a magic
runtime.callInterruptHandler (that is fully written by the interrupt
lowering pass), the runtime calls a generated function like
device/sifive.InterruptHandler where this switch already exists in
code.
- Debug information is improved. This can be helpful during actual
debugging but is also useful for other uses of DWARF debug
information.
For an example on debug information improvement, this is what a
backtrace might look like before this commit:
Breakpoint 1, 0x00000b46 in UART0_IRQHandler ()
(gdb) bt
#0 0x00000b46 in UART0_IRQHandler ()
#1 <signal handler called>
[..etc]
Notice that the debugger doesn't see the source code location where it
has stopped.
After this commit, breaking at the same line might look like this:
Breakpoint 1, (*machine.UART).handleInterrupt (arg1=..., uart=<optimized out>) at /home/ayke/src/github.com/tinygo-org/tinygo/src/machine/machine_nrf.go:200
200 uart.Receive(byte(nrf.UART0.RXD.Get()))
(gdb) bt
#0 (*machine.UART).handleInterrupt (arg1=..., uart=<optimized out>) at /home/ayke/src/github.com/tinygo-org/tinygo/src/machine/machine_nrf.go:200
#1 UART0_IRQHandler () at /home/ayke/src/github.com/tinygo-org/tinygo/src/device/nrf/nrf51.go:176
#2 <signal handler called>
[..etc]
By now, the debugger sees an actual source location for UART0_IRQHandler
(in the generated file) and an inlined function.
This commit has a few related changes:
* It sets the optsize attribute immediately in the compiler instead of
adding it to each function afterwards in a loop. This seems to me
like the more appropriate way to do it.
* It centralizes setting the optsize attribute in the transform
package, to make later changes easier.
* It sets the optsize in a few more places: to runtime.initAll and to
WebAssembly i64 wrappers.
This commit does not affect the binary size of any of the smoke tests,
so should be risk-free.
This commit adds object layout information to new heap allocations. It
is not yet used anywhere: the next commit will make use of it.
Object layout information will eventually be used for a (mostly) precise
garbage collector. This is what the data is made for. However, it is
also useful in the interp package which can work better if it knows the
memory layout and thus the approximate LLVM type of heap-allocated
objects.
This layout parameter is currently always nil and ignored, but will
eventually contain a pointer to a memory layout.
This commit also adds module verification to the transform tests, as I
found out that it didn't (and therefore didn't initially catch all
bugs).
This commit simplifies the IR a little bit: instead of calling
pseudo-functions runtime.interfaceImplements and
runtime.interfaceMethod, real declared functions are being called that
are then defined in the interface lowering pass. This should simplify
the interaction between various transformation passes. It also reduces
the number of lines of code, which is generally a good thing.
This adds support for a construct like this:
type foo func(fn foo)
Unfortunately, LLVM cannot create function pointers that look like this.
LLVM only supports named types for structs (not for pointers) and thus
can't add a pointer to a function type of the same type to a parameter
of that function type.
The fix is simple: cast all function pointers to a void function, in
LLVM IR:
void ()*
Raw function pointers are cast to this type before storing, and cast
back to the regular function type before calling. This means that
function parameters will never refer to its own type because raw
function types are fixed at that one type.
Somehow, this does have an effect on binary size in some cases. The
effect is small and goes both ways. On top of that, there is work
underway in LLVM which would make all pointer types opaque (without a
pointee type). This would make this whole commit useless and therefore
should fix any size increases that might happen.
https://llvm.org/docs/OpaquePointers.html
The division and remainder operations were lowered directly to LLVM IR.
This is wrong however because the Go specification defines exactly what
happens on a divide by zero or signed integer overflow and LLVM IR
itself treats those cases as undefined behavior. Therefore, this commit
implements divide by zero and signed integer overflow according to the
Go specification.
This does have an impact on the generated code, but it is surprisingly
small. I've used the drivers repo to test the code before and after, and
to my surprise most driver smoke tests are not changed at all. Those
that are, have only a small increase in code size. At the same time,
this change makes TinyGo more compliant to the Go specification.
This attribute is also set by Clang when it compiles C source files
(unless -fexceptions is set). The advantage is that no unwind tables are
emitted on Linux (and perhaps other systems). It also avoids
__aeabi_unwind_cpp_pr0 on ARM when using the musl libc.
For example, the following did not work before but does work with this
change:
// int add(int a, int b) {
// return a + b;
// }
import "C"
func main() {
println("add:", C.add(3, 5))
}
Even better, the functions in the header are compiled together with the
rest of the Go code and so they can be optimized together! Currently,
inlining is not yet allowed but const-propagation across functions
works. This should be improved in the future.
This is a loose collection of small fixes flagged by staticcheck:
- dead code
- regexp expressions not using backticks (`foobar` / "foobar")
- redundant types of slice and map initializers
- misc other fixes
Not all of these seem very useful to me, but in particular dead code is
nice to fix. I've fixed them all just so that if there are problems,
they aren't hidden in the noise of less useful issues.
For example, in this code:
type kv struct {
v float32
}
func foo(a *kv) {
type kv struct {
v byte
}
}
Both 'kv' types would be given the same LLVM type, even though they are
different types! This is fixed by only creating a LLVM type once per Go
type (types.Type).
As an added bonus, this change gives a performance improvement of about
0.4%. Not that much, but certainly not nothing for such a small change.
This commit improves make([]T, len) to be closer to upstream Go. The
difference is unlikely to have much real-world effect, but previously
certain make([]T, len) expressions would not result in a slice out of
bounds error in TinyGo while they would have done such a thing in Go
proper. In practice, available RAM is likely to be a bigger limiting
factor.
This commit adds support for the following packages:
- crypto/md5
- crypto/sha1
- crypto/sha256
- crypto/sha512
They would normally need assembly implementations, but with these
aliases they already work everywhere.