tinygo/src/testing/benchmark.go
Damian Gryski 698b1f19c6 testing: support -test.count
This makes running benchmarks repeatedly easier.
2023-03-31 09:07:13 +02:00

509 строки
13 КиБ
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// This file has been modified for use by the TinyGo compiler.
package testing
import (
"flag"
"fmt"
"io"
"math"
"runtime"
"strconv"
"strings"
"time"
)
func initBenchmarkFlags() {
matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`")
benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
flag.Var(&benchTime, "test.benchtime", "run each benchmark for duration `d`")
}
var (
matchBenchmarks *string
benchmarkMemory *bool
benchTime = benchTimeFlag{d: 1 * time.Second} // changed during test of testing package
testCount *int
)
type benchTimeFlag struct {
d time.Duration
n int
}
func (f *benchTimeFlag) String() string {
if f.n > 0 {
return fmt.Sprintf("%dx", f.n)
}
return time.Duration(f.d).String()
}
func (f *benchTimeFlag) Set(s string) error {
if strings.HasSuffix(s, "x") {
n, err := strconv.ParseInt(s[:len(s)-1], 10, 0)
if err != nil || n <= 0 {
return fmt.Errorf("invalid count")
}
*f = benchTimeFlag{n: int(n)}
return nil
}
d, err := time.ParseDuration(s)
if err != nil || d <= 0 {
return fmt.Errorf("invalid duration")
}
*f = benchTimeFlag{d: d}
return nil
}
// InternalBenchmark is an internal type but exported because it is cross-package;
// it is part of the implementation of the "go test" command.
type InternalBenchmark struct {
Name string
F func(b *B)
}
// B is a type passed to Benchmark functions to manage benchmark
// timing and to specify the number of iterations to run.
//
// A benchmark ends when its Benchmark function returns or calls any of the methods
// FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called
// only from the goroutine running the Benchmark function.
// The other reporting methods, such as the variations of Log and Error,
// may be called simultaneously from multiple goroutines.
//
// Like in tests, benchmark logs are accumulated during execution
// and dumped to standard output when done. Unlike in tests, benchmark logs
// are always printed, so as not to hide output whose existence may be
// affecting benchmark results.
type B struct {
common
context *benchContext
N int
benchFunc func(b *B)
bytes int64
missingBytes bool // one of the subbenchmarks does not have bytes set.
benchTime benchTimeFlag
timerOn bool
result BenchmarkResult
// report memory statistics
showAllocResult bool
// initial state of MemStats.Mallocs and MemStats.TotalAlloc
startAllocs uint64
startBytes uint64
// net total after running benchmar
netAllocs uint64
netBytes uint64
}
// StartTimer starts timing a test. This function is called automatically
// before a benchmark starts, but it can also be used to resume timing after
// a call to StopTimer.
func (b *B) StartTimer() {
if !b.timerOn {
b.start = time.Now()
b.timerOn = true
var mstats runtime.MemStats
runtime.ReadMemStats(&mstats)
b.startAllocs = mstats.Mallocs
b.startBytes = mstats.TotalAlloc
}
}
// StopTimer stops timing a test. This can be used to pause the timer
// while performing complex initialization that you don't
// want to measure.
func (b *B) StopTimer() {
if b.timerOn {
b.duration += time.Since(b.start)
b.timerOn = false
var mstats runtime.MemStats
runtime.ReadMemStats(&mstats)
b.netAllocs += mstats.Mallocs - b.startAllocs
b.netBytes += mstats.TotalAlloc - b.startBytes
}
}
// ResetTimer zeroes the elapsed benchmark time and memory allocation counters
// and deletes user-reported metrics.
func (b *B) ResetTimer() {
if b.timerOn {
b.start = time.Now()
var mstats runtime.MemStats
runtime.ReadMemStats(&mstats)
b.startAllocs = mstats.Mallocs
b.startBytes = mstats.TotalAlloc
}
b.duration = 0
b.netAllocs = 0
b.netBytes = 0
}
// SetBytes records the number of bytes processed in a single operation.
// If this is called, the benchmark will report ns/op and MB/s.
func (b *B) SetBytes(n int64) { b.bytes = n }
// ReportAllocs enables malloc statistics for this benchmark.
// It is equivalent to setting -test.benchmem, but it only affects the
// benchmark function that calls ReportAllocs.
func (b *B) ReportAllocs() {
b.showAllocResult = true
}
// runN runs a single benchmark for the specified number of iterations.
func (b *B) runN(n int) {
b.N = n
b.ResetTimer()
b.StartTimer()
b.benchFunc(b)
b.StopTimer()
}
func min(x, y int64) int64 {
if x > y {
return y
}
return x
}
func max(x, y int64) int64 {
if x < y {
return y
}
return x
}
// run1 runs the first iteration of benchFunc. It reports whether more
// iterations of this benchmarks should be run.
func (b *B) run1() bool {
if ctx := b.context; ctx != nil {
// Extend maxLen, if needed.
if n := len(b.name); n > ctx.maxLen {
ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size.
}
}
b.runN(1)
return !b.hasSub
}
// run executes the benchmark.
func (b *B) run() {
if b.context != nil {
// Running go test --test.bench
b.processBench(b.context) // calls doBench and prints results
} else {
// Running func Benchmark.
b.doBench()
}
}
func (b *B) doBench() BenchmarkResult {
// in upstream, this uses a goroutine
b.launch()
return b.result
}
// launch launches the benchmark function. It gradually increases the number
// of benchmark iterations until the benchmark runs for the requested benchtime.
// run1 must have been called on b.
func (b *B) launch() {
runtime.GC()
// Run the benchmark for at least the specified amount of time.
if b.benchTime.n > 0 {
b.runN(b.benchTime.n)
} else {
d := b.benchTime.d
b.failed = false
b.duration = 0
for n := int64(1); !b.failed && b.duration < d && n < 1e9; {
last := n
// Predict required iterations.
goalns := d.Nanoseconds()
prevIters := int64(b.N)
prevns := b.duration.Nanoseconds()
if prevns <= 0 {
// Round up, to avoid div by zero.
prevns = 1
}
// Order of operations matters.
// For very fast benchmarks, prevIters ~= prevns.
// If you divide first, you get 0 or 1,
// which can hide an order of magnitude in execution time.
// So multiply first, then divide.
n = goalns * prevIters / prevns
// Run more iterations than we think we'll need (1.2x).
n += n / 5
// Don't grow too fast in case we had timing errors previously.
n = min(n, 100*last)
// Be sure to run at least one more than last time.
n = max(n, last+1)
// Don't run more than 1e9 times. (This also keeps n in int range on 32 bit platforms.)
n = min(n, 1e9)
b.runN(int(n))
}
}
b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes}
}
// BenchmarkResult contains the results of a benchmark run.
type BenchmarkResult struct {
N int // The number of iterations.
T time.Duration // The total time taken.
Bytes int64 // Bytes processed in one iteration.
MemAllocs uint64 // The total number of memory allocations.
MemBytes uint64 // The total number of bytes allocated.
}
// NsPerOp returns the "ns/op" metric.
func (r BenchmarkResult) NsPerOp() int64 {
if r.N <= 0 {
return 0
}
return r.T.Nanoseconds() / int64(r.N)
}
// mbPerSec returns the "MB/s" metric.
func (r BenchmarkResult) mbPerSec() float64 {
if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
return 0
}
return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
}
// AllocsPerOp returns the "allocs/op" metric,
// which is calculated as r.MemAllocs / r.N.
func (r BenchmarkResult) AllocsPerOp() int64 {
if r.N <= 0 {
return 0
}
return int64(r.MemAllocs) / int64(r.N)
}
// AllocedBytesPerOp returns the "B/op" metric,
// which is calculated as r.MemBytes / r.N.
func (r BenchmarkResult) AllocedBytesPerOp() int64 {
if r.N <= 0 {
return 0
}
return int64(r.MemBytes) / int64(r.N)
}
// String returns a summary of the benchmark results.
// It follows the benchmark result line format from
// https://golang.org/design/14313-benchmark-format, not including the
// benchmark name.
// Extra metrics override built-in metrics of the same name.
// String does not include allocs/op or B/op, since those are reported
// by MemString.
func (r BenchmarkResult) String() string {
buf := new(strings.Builder)
fmt.Fprintf(buf, "%8d", r.N)
// Get ns/op as a float.
ns := float64(r.T.Nanoseconds()) / float64(r.N)
if ns != 0 {
buf.WriteByte('\t')
prettyPrint(buf, ns, "ns/op")
}
if mbs := r.mbPerSec(); mbs != 0 {
fmt.Fprintf(buf, "\t%7.2f MB/s", mbs)
}
return buf.String()
}
// MemString returns r.AllocedBytesPerOp and r.AllocsPerOp in the same format as 'go test'.
func (r BenchmarkResult) MemString() string {
return fmt.Sprintf("%8d B/op\t%8d allocs/op",
r.AllocedBytesPerOp(), r.AllocsPerOp())
}
func prettyPrint(w io.Writer, x float64, unit string) {
// Print all numbers with 10 places before the decimal point
// and small numbers with four sig figs. Field widths are
// chosen to fit the whole part in 10 places while aligning
// the decimal point of all fractional formats.
var format string
switch y := math.Abs(x); {
case y == 0 || y >= 999.95:
format = "%10.0f %s"
case y >= 99.995:
format = "%12.1f %s"
case y >= 9.9995:
format = "%13.2f %s"
case y >= 0.99995:
format = "%14.3f %s"
case y >= 0.099995:
format = "%15.4f %s"
case y >= 0.0099995:
format = "%16.5f %s"
case y >= 0.00099995:
format = "%17.6f %s"
default:
format = "%18.7f %s"
}
fmt.Fprintf(w, format, x, unit)
}
type benchContext struct {
match *matcher
maxLen int // The largest recorded benchmark name.
}
func runBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool {
// If no flag was specified, don't run benchmarks.
if len(*matchBenchmarks) == 0 {
return true
}
ctx := &benchContext{
match: newMatcher(matchString, *matchBenchmarks, "-test.bench"),
}
var bs []InternalBenchmark
for _, Benchmark := range benchmarks {
if _, matched, _ := ctx.match.fullName(nil, Benchmark.Name); matched {
bs = append(bs, Benchmark)
benchName := Benchmark.Name
if l := len(benchName); l > ctx.maxLen {
ctx.maxLen = l
}
}
}
main := &B{
common: common{
name: "Main",
},
benchTime: benchTime,
benchFunc: func(b *B) {
for _, Benchmark := range bs {
b.Run(Benchmark.Name, Benchmark.F)
}
},
context: ctx,
}
main.runN(1)
return true
}
// processBench runs bench b and prints the results.
func (b *B) processBench(ctx *benchContext) {
benchName := b.name
for i := 0; i < flagCount; i++ {
if ctx != nil {
fmt.Printf("%-*s\t", ctx.maxLen, benchName)
}
r := b.doBench()
if b.failed {
// The output could be very long here, but probably isn't.
// We print it all, regardless, because we don't want to trim the reason
// the benchmark failed.
fmt.Printf("--- FAIL: %s\n%s", benchName, "") // b.output)
return
}
if ctx != nil {
results := r.String()
if *benchmarkMemory || b.showAllocResult {
results += "\t" + r.MemString()
}
fmt.Println(results)
}
}
}
// Run benchmarks f as a subbenchmark with the given name. It reports
// true if the subbenchmark succeeded.
//
// A subbenchmark is like any other benchmark. A benchmark that calls Run at
// least once will not be measured itself and will be called once with N=1.
func (b *B) Run(name string, f func(b *B)) bool {
benchName, ok, partial := b.name, true, false
if b.context != nil {
benchName, ok, partial = b.context.match.fullName(&b.common, name)
}
if !ok {
return true
}
b.hasSub = true
sub := &B{
common: common{
name: benchName,
level: b.level + 1,
},
benchFunc: f,
benchTime: b.benchTime,
context: b.context,
}
if partial {
// Partial name match, like -bench=X/Y matching BenchmarkX.
// Only process sub-benchmarks, if any.
sub.hasSub = true
}
if sub.run1() {
sub.run()
}
b.add(sub.result)
return !sub.failed
}
// add simulates running benchmarks in sequence in a single iteration. It is
// used to give some meaningful results in case func Benchmark is used in
// combination with Run.
func (b *B) add(other BenchmarkResult) {
r := &b.result
// The aggregated BenchmarkResults resemble running all subbenchmarks as
// in sequence in a single benchmark.
r.N = 1
r.T += time.Duration(other.NsPerOp())
if other.Bytes == 0 {
// Summing Bytes is meaningless in aggregate if not all subbenchmarks
// set it.
b.missingBytes = true
r.Bytes = 0
}
if !b.missingBytes {
r.Bytes += other.Bytes
}
}
// A PB is used by RunParallel for running parallel benchmarks.
type PB struct {
}
// Next reports whether there are more iterations to execute.
func (pb *PB) Next() bool {
return false
}
// RunParallel runs a benchmark in parallel.
//
// Not implemented
func (b *B) RunParallel(body func(*PB)) {
return
}
// Benchmark benchmarks a single function. It is useful for creating
// custom benchmarks that do not use the "go test" command.
//
// If f calls Run, the result will be an estimate of running all its
// subbenchmarks that don't call Run in sequence in a single benchmark.
func Benchmark(f func(b *B)) BenchmarkResult {
b := &B{
benchFunc: f,
benchTime: benchTime,
}
if b.run1() {
b.run()
}
return b.result
}