Comparing slices against nil currently causes the slice to escape, due
to a limitation in LLVM 8. This leads to lots of unnecessary heap
allocations. With LLVM 9 and some modifications to TinyGo, this should
be fixed. However, this commit is an easy win right now.
Returning an error when both slices are nil is not necessary, when the
check is left out it should just do nothing.
For updating an SPI screen using the st7735 driver, this results in a
~7% performance win.
Instead of configuring machine.I2C0, machine.I2C1, etc. statically,
allow the pins to be set using machine.I2CConfig. This will also
automatically configure the correct pin mode for each pin instead of
having to specify that manually.
An optimization introduced in a04db67ea9
seems to have broken arduino uno compiled hex. Setting optimzation
flags to 1, 2, or s builds proper hex binaries though.
These patches have been the result of troubleshooting over slack:
> @aykevl
> that preinit also doesn't look right. Can you try this variant,
> with 8-bit stores instead of 32-bit stores?
> There might be some alignment issue: the _ebss might not be
> aligned resulting in ptr != unsafe.Pointer(&_ebss) never being true.
Co-authored-by: Ayke van Laethem <aykevanlaethem@gmail.com>
Co-authored-by: Jaden Weiss <jadr2ddude@gmail.com>
The SPI peripheral in the nrf chips support double buffering, which
makes it possible to keep sending continuously. This change introduces
double buffering on the nrf chips, which should improve SPI performance.
Tested on the pca10040 (nrf52832).
Compared to the already supported stm32f103xx "bluepill" board this:
- features 128 KiB flash memory size ("RB" suffix) instead of 64 KiB, see `targets/stm32f103rb.ld`
- has onboard ST-LINK/V2-1 programmer and debugger requiring different OpenOCD configuration file
- uses USART2 connected to ST-LINK/V2-1 debugger as virtual COM port over USB for `putchar()`
- has a user-accessible button besides the reset button
Motivation: The bluepill uses USART1 as UART0 but other boards like the
STM32 Nucleo boards (and disco as well) use USART2 for USB COM port.
To avoid duplication of code the same pattern as in `machine_atsamd21.go`
is applied where only UART-specific code is moved to `board_*.go`.
The SPI frequency is broken since b8c326d710
added I2C interface and changed the unrelated `PCLK2 = HCLK/4` initialization
to `PCLK2 = HCLK/1` (but I2C uses PCLK1 anyways).
This commit changes all baud rate prescalers to be /4 compared to before.
Note: it is not possible to find an equivalent for 125 KHz SPI speed,
it will be too fast (`f = 72 MHz / 256`)
False positives (pointers that point to nowhere but happen to point into
the heap) would result in the block just before that pointer to be
marked. This is clearly not intended, so ignore such a pointer.
A bug was introduced in the previous commit that led to miscompilations
in the time.Sleep function when the scheduler was disabled, because
time.Sleep (implemented in the runtime) tried to switch to the scheduler
stack.
This commit restores the binary size of most examples to what it was
before, but still reduces static RAM consumption (.bss) slightly. This
gives me some confidence that it does indeed fix the introduced bug.
This scheduler is intended to live along the (stackless) coroutine based
scheduler which is needed for WebAssembly and unsupported platforms. The
stack based scheduler is somewhat simpler in implementation as it does
not require full program transform passes and supports things like
function pointers and interface methods out of the box with no changes.
Code size is reduced in most cases, even in the case where no scheduler
scheduler is used at all. I'm not exactly sure why but these changes
likely allowed some further optimizations somewhere. Even RAM is
slightly reduced, perhaps some global was elminated in the process as
well.
Implements nearly all of the test logging methods for both T and B
structs. Majority of the code has been copied from:
golang.org/src/testing/testing.go
then updated to match the existing testing.go structure.
Code structure/function/method order mimics upstream.
Both FailNow() and SkipNow() cannot be completely implemented,
because they require an early exit from the goroutine. Instead,
they call Error() to report the limitation.
This incomplete implementation allows more detailed test logging and
increases compatiblity with upstream.
Linked lists are usually implemented as follows:
type linkedList struct {
next *linkedList
data int // whatever
}
This caused a stack overflow while writing out the reflect run-time type
information. This has now been fixed by splitting the allocation of a
named type number from setting the underlying type in the sidetable.
Previously it would use a bitcast, which cannot directly be used on AVR
because functions live in a different address space on AVR. To fix this,
use a ptrtoint/inttoptr pair.
This allows testdata/coroutines.go to be compiled, but due to what
appears to be an LLVM bug cannot be optimized and codegen'ed:
tinygo: /home/ayke/src/github.com/tinygo-org/tinygo/llvm-project/llvm/lib/IR/Constants.cpp:1776: static llvm::Constant *llvm::ConstantExpr::getBitCast(llvm::Constant *, llvm::Type *, bool): Assertion `CastInst::castIsValid(Instruction::BitCast, C, DstTy) && "Invalid constantexpr bitcast!"' failed.
This happens as one of the function passes after the TinyGo passes and
after the module has been verified so most likely it is a bug somewhere
in LLVM.