With this change, it becomes possible to get the element type of named
slices, pointers, and channels.
This is a prerequisite to enable the common named struct types. There's
more to come.
This commit fixes the following issue:
https://github.com/tinygo-org/tinygo/issues/309
Also, it prepares for some other reflect-related changes that should
make it easier to add support for named types (etc.) in the future.
See the following bug: https://bugs.llvm.org/show_bug.cgi?id=42881
I think this is a bug in LLVM, but the code in question wasn't the best
code anyway. By fixing this, about 16 bytes of code are saved on ARM
chips (and much more on AVR).
In particular, add support for a few math intrinsics for WebAssembly,
but add a few intrinsics to other systems as well at the same time. Some
may be missing still but will be easy to add if needed.
This increases the performance of one example by 50% to 100% depending
on the browser: the bottleneck was the inefficient sqrt implementation.
When the target supports it, allow the (initial) heap size to be
configured. Currently only supported in WebAssembly.
This also changes the default heap size of WebAssembly from 64kB to 1MB.
This is directly useful to avoid some unsafety around runtime.alloc and
should be useful in general.
This pragma has the same form as in the main Go compiler:
https://github.com/golang/go/issues/12312
dumb -> leaking:
make it more clear what this "GC" does: leak everything.
marksweep -> conservative:
"marksweep" is too generic, use "conservative" to differentiate
between future garbage collectors: precise marksweep / mark-compact /
refcounting.
Instead of trying to modify periperhals directly, external functions are
called. For example, __tinygo_gpio_set sets a GPIO pin to a specified
value (high or low). It is expected that binaries made this way will be
linked with some extra libraries that implement support for these
functions.
One particularly interesting case is this experimental board simulator:
https://github.com/aykevl/tinygo-play
Compiling code to WebAssembly with the correct build tag for a board
will enable this board to be simulated in the browser.
Atmel/Microchip based SAMD boards are not currently supported, because
their I2C/SPI support is somewhat uncommon and harder to support in the
machine API. They may require a modification to the machine API for
proper support.
This change results in changes to all smoketests for Cortex-M based
chips: they get a bit smaller (32-48 bytes). I'm not sure why but
probably because the inliner made a different inlining decision. There
was a similar effect when files generated from SVD files switched to the
new volatile types so it's probably harmless.
strings.IndexByte was implemented in the runtime up to Go 1.11. It is
implemented using a direct call to internal/bytealg.IndexByte since Go
1.12.
Make sure we remain compatible with both.
This is very useful for debugging. It differentiates between a stack
overflow and other errors (because it's easy to see when a stack
overflow occurs) and prints the old stack pointer and program counter if
available.