This is just support for the chip, no boards are currently supported.
However, you can use this target on a custom board.
Notes:
- This required a new runtime and machine implementation, because the
hardware is actually very different (and much nicer than older
AVRs!).
- I had to update gen-device-avr to support this chip. This also
affects the generated output of other AVRs, but I checked all chips
we support and there shouldn't be any backwards incompatible
changes.
- I did not implement peripherals like UART, I2C, SPI, etc because I
don't need them. That is left to do in the future.
You can flash these chips with only a UART and a 1kOhm resistor, which
is really nice (no special hardware needed). Here is the program I've
used for this purpose: https://pypi.org/project/pymcuprog/
machine/stm32, nrf: implement machine.Flash
Implements the machine.Flash interface using the same definition as the tinyfs BlockDevice.
This implementation covers the stm32f4, stm32l4, stm32wlx, nrf51, nrf52, and nrf528xx processors.
Replace ADCChannel.ReadTemperature() with a simple ReadTemperature
function.
Not all chips will have a temperature sensor that is read by sampling an
ADC channel. The replacement ReadTemperature is simpler and more generic
to other chip families.
This breaks chips that were relying on the previous ReadTemperature
method. I hope it won't break a lot of existing code. If it does, a
fallback can be added.
This adds a summary of each wasm example, as before it was a bit unclear
how to do so. This also fixes the callback example which was broken.
Fixes#2568
Signed-off-by: Adrian Cole <adrian@tetrate.io>
Go 1.19 started reformatting code in a way that makes it more obvious
how it will be rendered on pkg.go.dev. It gets it almost right, but not
entirely. Therefore, I had to modify some of the comments so that they
are formatted correctly.
Do it all at once in preparation for Go 1.18 support.
To make this commit, I've simply modified the `fmt-check` Makefile
target to rewrite files instead of listing the differences. So this is a
fully mechanical change, it should not have introduced any errors.
Previously, the machine.UART0 object had two meanings:
- it was the first UART on the chip
- it was the default output for println
These two meanings conflict, and resulted in workarounds like:
- Defining UART0 to refer to the USB-CDC interface (atsamd21,
atsamd51, nrf52840), even though that clearly isn't an UART.
- Defining NRF_UART0 to avoid a conflict with UART0 (which was
redefined as a USB-CDC interface).
- Defining aliases like UART0 = UART1, which refer to the same
hardware peripheral (stm32).
This commit changes this to use a new machine.Serial object for the
default serial port. It might refer to the first or second UART
depending on the board, or even to the USB-CDC interface. Also, UART0
now really refers to the first UART on the chip, no longer to a USB-CDC
interface.
The changes in the runtime package are all just search+replace. The
changes in the machine package are a mixture of search+replace and
manual modifications.
This commit does not affect binary size, in fact it doesn't affect the
resulting binary at all.
This commit refactors PWM support in the machine package to be more
flexible. The new API can be used to produce tones at a specific
frequency and control servos in a portable way, by abstracting over
counter widths and prescalers.